期刊文献+

二维空间聚类的树ART2模型 被引量:1

Tree-ART2 model for clustering spatial data in two-dimensional space
下载PDF
导出
摘要 ART2网络是一种著名的聚类方法,已实际应用于诸多领域,其作用于二维空间数据,不仅存在模式漂移和向量幅度信息缺失的问题,而且难以适应不规则形态分布的空间数据的聚类。提出了一种树ART2网络模型(TART2),通过长期记忆(LTM)模式的调整和向量幅度信息的学习,使ART2网络保持了带空间距离约束的旧模式记忆;引入树结构优化,降低了警戒参数设置的主观要求,减少了模式交混现象的发生。对比实验结果表明,TART2网络更适用于带状分布的空间数据聚类,具有较高的可塑性和自适应性。 The Adaptive Resonance Theory 2(ART2) is one of well-known clustering algorithms and has been applied to many fields practically.However,to be a clustering algorithm for two-dimension spatial data,it not only has the shortcomings of pattern drift and vector model of information missing,but also is difficult to adapt to spatial data clustering of irregular distribution.A Tree-ART2(TART2) network model was proposed.It retained the memory of old model which maintained the constraint of spatial distance by learning and adjusting Long Time Memory(LTM) pattern and amplitude information of vector.Meanwhile,introducing tree structure to the model could reduce the subjective requirement of vigilance parameter and decrease the occurrence of pattern mixing.The comparative experimental results show that TART2 network is suitable for clustering about the ribbon distribution of spatial data,and it has higher plasticity and adaptability.
出处 《计算机应用》 CSCD 北大核心 2011年第5期1328-1330,共3页 journal of Computer Applications
基金 国家自然科学基金资助项目(4090119740337055) 云南省自然科学基金资助项目(2008D032M)
关键词 空间聚类 ART2神经网络 模式交混 数据粒度 树结构 spatial clustering Adaptive Resonance Theory 2(ART2) neural network pattern mixing data granularity tree-structure
  • 相关文献

参考文献12

  • 1顾民,葛良全.一种ART2神经网络的改进算法[J].计算机应用,2007,27(4):945-947. 被引量:8
  • 2钱晓东,王正欧.基于算法改进的ART2数据聚类方法研究[J].哈尔滨工业大学学报,2006,38(9):1549-1552. 被引量:3
  • 3钟旭,陈德钊,陈亚秋,罗建宏.具有双向检测机制的ART2神经元网络[J].浙江大学学报(工学版),2004,38(12):1540-1544. 被引量:4
  • 4李德仁著..空间数据挖掘的理论与应用[M].北京:科学出版社,2006:569.
  • 5朱大奇, 史慧..人工神经网络原理及应用[M],2006.
  • 6(美)[A.S.潘迪]AbhijitS.Pandya,(美)[R.B.梅西]RobertB.Macy著,徐勇等.神经网络模式识别及其实现[M]电子工业出版社,1999. 被引量:1
  • 7LI LIANGJUN,ZHANG BIN,CHE YUANYUAN.The improved al-gorithm of ART2 in data mining. 2009 First InternationalWorkshop on Database Technology and Applications . 2009 被引量:1
  • 8LUO JIANHONG,CHEN DEZHAO.An enhanced ART2 neuralnetwork for clustering analysis. 2008 Workshop on KnowledgeDiscovery and Data Mining . 2008 被引量:1
  • 9KARTHIKEYAN B,GOPALS,VENKATESHS.ART2—An un-supervised neural network for PD pattern recognition and classifica-tion. Expert Systems With Applications . 2006 被引量:1
  • 10CHEN C H,KHOO L P YAN W.A strategy for acquiringcustomer requirement patterns using laddering technique andART2 neural network. Advanced Engineering Informatics . 2002 被引量:1

二级参考文献22

  • 1钟旭,陈德钊,陈亚秋,罗建宏.具有双向检测机制的ART2神经元网络[J].浙江大学学报(工学版),2004,38(12):1540-1544. 被引量:4
  • 2徐艺萍,邓辉文,李阳旭.一种改进的ART2网络学习算法[J].计算机应用,2006,26(3):659-662. 被引量:15
  • 3贾鹏,尹峻松,胡德文.引入遗忘机制的ART2改进模型[J].计算机工程与应用,2006,42(9):60-62. 被引量:5
  • 4PANDYAAS 徐勇.神经网络模式识别及其实现[M].北京:电子工业出版社,1999.. 被引量:15
  • 5FREEMAN J A,SKAPURA D M.Neural Networks Algorithms, Applications and Programming Techniques[M].Houston: University of Houston Press,1988. 被引量:1
  • 6CAO Yong-qiang, WU Jian-hong.Projective ART for clustering data sets in high dimensional spaces[J].Neural Network,2002,15: 105-120. 被引量:1
  • 7PHAM D T,SUKKAR M F.A predictor based on adaptive resonance theory[J].Artificial Intelligence in Engineering,1998,12: 219-228. 被引量:1
  • 8CARPENTER G A,GROSSBERG S.ART2: Self-organization of stable category recognition codes for analog input patterns[J].Applied Optics,1987,26(23): 4919-4930. 被引量:1
  • 9HOUSHMAND G P B. An efficient neural classification chain of SAR and optical urban images[J].International Journal of Remote Sensing,2001,22(8): 1535-1553. 被引量:1
  • 10PHAM D T, CHAN A B.Unsupervised adaptive resonance theory neural networks for control chart pattern recognition[J].Proceedings of the Institution of Mechanical Engineers,2001,215(1): 59-67. 被引量:1

共引文献11

同被引文献4

引证文献1

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部