Leaching mechanism of acid roasted ore in the spodumene sulphuric acid process was investigated. Experimental results of leaching rates along with variations of leaching temperature in the acidized and neutral leachin...Leaching mechanism of acid roasted ore in the spodumene sulphuric acid process was investigated. Experimental results of leaching rates along with variations of leaching temperature in the acidized and neutral leaching processes were reported. Applying ion exchange mechanism in acidized roasting and absorption entrainment mechanism at high temperature, leaching mechanism was discussed. A better explanation of experimental results was given.展开更多
To provide a theoretical basis for a suitable process to extract gold from refractory gold concentrates, process mineralogy on the acid leaching residue of gold calcine was studied by chemical composition, X-ray diffr...To provide a theoretical basis for a suitable process to extract gold from refractory gold concentrates, process mineralogy on the acid leaching residue of gold calcine was studied by chemical composition, X-ray diffraction, scanning electron microscopy-energy spectrum, and mineral dissociation analysis. The results showed that the acid leaching residue contained Au 68.22 g/t, Ag 92.71 g/t, Fe 0.44%, As 0.10%, and S 0.55%. Gold and silver minerals existed as native gold, argentite, and proustite. Quartz, the main gangue mineral, accounted for 78.33 wt/%. The dissociation degree analysis showed that the proportions of monomer and exposed gold in acid leaching residue were 96.66 wt%. The cyanidation results showed that the cyanide gold leaching rate of acid leaching residues was close to 100 wt%. However, the maximum cyanide gold leaching rate of gold calcine was only 85.31 wt%. This suggests that acid leaching can increase the gold dissolution rate in the cyanide process.展开更多
文摘Leaching mechanism of acid roasted ore in the spodumene sulphuric acid process was investigated. Experimental results of leaching rates along with variations of leaching temperature in the acidized and neutral leaching processes were reported. Applying ion exchange mechanism in acidized roasting and absorption entrainment mechanism at high temperature, leaching mechanism was discussed. A better explanation of experimental results was given.
基金supported by the funding project of Xinjiang high technology research and development program(No.201515108)funding project for Xinjiang autonomous region's strategic emerging industries(No.201552)
文摘To provide a theoretical basis for a suitable process to extract gold from refractory gold concentrates, process mineralogy on the acid leaching residue of gold calcine was studied by chemical composition, X-ray diffraction, scanning electron microscopy-energy spectrum, and mineral dissociation analysis. The results showed that the acid leaching residue contained Au 68.22 g/t, Ag 92.71 g/t, Fe 0.44%, As 0.10%, and S 0.55%. Gold and silver minerals existed as native gold, argentite, and proustite. Quartz, the main gangue mineral, accounted for 78.33 wt/%. The dissociation degree analysis showed that the proportions of monomer and exposed gold in acid leaching residue were 96.66 wt%. The cyanidation results showed that the cyanide gold leaching rate of acid leaching residues was close to 100 wt%. However, the maximum cyanide gold leaching rate of gold calcine was only 85.31 wt%. This suggests that acid leaching can increase the gold dissolution rate in the cyanide process.