为了提高实时性和精确度,提出一种利用角点动能检测群体异常行为的方法.首先,利用金字塔Lucas-Kanade光流法计算FAST(Features from Accelerated Segment Test)角点光流,筛选出运动的角点;然后,利用k均值方法聚类图像中的角点,自适应地...为了提高实时性和精确度,提出一种利用角点动能检测群体异常行为的方法.首先,利用金字塔Lucas-Kanade光流法计算FAST(Features from Accelerated Segment Test)角点光流,筛选出运动的角点;然后,利用k均值方法聚类图像中的角点,自适应地调整正常行为角点动能,定义每一类的局部异常程度为角点平均动能与正常时的比值,整体运动异常程度为局部异常程度之和;最后,如果整体异常程度大于异常阈值为异常行为,否则为正常行为.实验结果表明:该方法能够检测出多种群体异常行为且实时性强于Harris、SIFT(Scale-Invariant Feature Transform)和SURF(Speed Up Robust Features)角点,精确度高于光流法、社会力法和图分析法.展开更多
公共场所中的人群突发局部聚集常是异常事件发生的先兆,由于其随机性强,前兆特征不明显,现有的传统计算机视觉技术较难对其有效检测。基于蝗虫视觉系统的神经结构特性与小叶巨型运动检测器(lobula giant movement detector,LGMD)危险感...公共场所中的人群突发局部聚集常是异常事件发生的先兆,由于其随机性强,前兆特征不明显,现有的传统计算机视觉技术较难对其有效检测。基于蝗虫视觉系统的神经结构特性与小叶巨型运动检测器(lobula giant movement detector,LGMD)危险感知机理,提出一种人群突发局部聚集行为检测的LGMD改进型神经网络模型。该模型感知人群活动在视野域中引发的视觉信号,基于哺乳动物视网膜视觉信号处理机制整合视觉运动线索,借助LGMD神经元危险感知机理构建尖峰阈值机制调谐神经网络输出,以感知人群活动中的突发聚集行为。不同场景下的人群活动视频实验结果表明,提出的神经网络能有效检测视野域中人群突发局部聚集行为并对其预警。该文涉及生物视神经机理启发的人群活动动态视觉信息加工处理,可为智能视频监控中的人群活动检测与行为分析提供新思想、新方法。展开更多
To improve the detection accuracy and robustness of crowd anomaly detection,especially crowd emergency evacuation detection,the abnormal crowd behavior detection method is proposed.This method is based on the improved...To improve the detection accuracy and robustness of crowd anomaly detection,especially crowd emergency evacuation detection,the abnormal crowd behavior detection method is proposed.This method is based on the improved statistical global optical flow entropy which can better describe the degree of chaos of crowd.First,the optical flow field is extracted from the video sequences and a 2D optical flow histogram is gained.Then,the improved optical flow entropy,combining information theory with statistical physics is calculated from 2D optical flow histograms.Finally,the anomaly can be detected according to the abnormality judgment formula.The experimental results show that the detection accuracy achieved over 95%in three public video datasets,which indicates that the proposed algorithm outperforms other state-of-the-art algorithms.展开更多
文摘为了提高实时性和精确度,提出一种利用角点动能检测群体异常行为的方法.首先,利用金字塔Lucas-Kanade光流法计算FAST(Features from Accelerated Segment Test)角点光流,筛选出运动的角点;然后,利用k均值方法聚类图像中的角点,自适应地调整正常行为角点动能,定义每一类的局部异常程度为角点平均动能与正常时的比值,整体运动异常程度为局部异常程度之和;最后,如果整体异常程度大于异常阈值为异常行为,否则为正常行为.实验结果表明:该方法能够检测出多种群体异常行为且实时性强于Harris、SIFT(Scale-Invariant Feature Transform)和SURF(Speed Up Robust Features)角点,精确度高于光流法、社会力法和图分析法.
文摘公共场所中的人群突发局部聚集常是异常事件发生的先兆,由于其随机性强,前兆特征不明显,现有的传统计算机视觉技术较难对其有效检测。基于蝗虫视觉系统的神经结构特性与小叶巨型运动检测器(lobula giant movement detector,LGMD)危险感知机理,提出一种人群突发局部聚集行为检测的LGMD改进型神经网络模型。该模型感知人群活动在视野域中引发的视觉信号,基于哺乳动物视网膜视觉信号处理机制整合视觉运动线索,借助LGMD神经元危险感知机理构建尖峰阈值机制调谐神经网络输出,以感知人群活动中的突发聚集行为。不同场景下的人群活动视频实验结果表明,提出的神经网络能有效检测视野域中人群突发局部聚集行为并对其预警。该文涉及生物视神经机理启发的人群活动动态视觉信息加工处理,可为智能视频监控中的人群活动检测与行为分析提供新思想、新方法。
基金National Natural Science Foundation of China(61701029)。
文摘To improve the detection accuracy and robustness of crowd anomaly detection,especially crowd emergency evacuation detection,the abnormal crowd behavior detection method is proposed.This method is based on the improved statistical global optical flow entropy which can better describe the degree of chaos of crowd.First,the optical flow field is extracted from the video sequences and a 2D optical flow histogram is gained.Then,the improved optical flow entropy,combining information theory with statistical physics is calculated from 2D optical flow histograms.Finally,the anomaly can be detected according to the abnormality judgment formula.The experimental results show that the detection accuracy achieved over 95%in three public video datasets,which indicates that the proposed algorithm outperforms other state-of-the-art algorithms.