High quality nano-sized zirconium carbide (ZrC) powders were successfully fabricated via a developed chemical active dilution self-propagating high-temperature synthesis (SHS) method assisted by ball milling pretr...High quality nano-sized zirconium carbide (ZrC) powders were successfully fabricated via a developed chemical active dilution self-propagating high-temperature synthesis (SHS) method assisted by ball milling pretreatment process using traditional cheap zirconium dioxide powder (ZrO2), magnesium powder (Mg) and sucrose (C12H22Oll) as raw materials. FSEM, TEM, HRTEM, SAED, XRD, FTIR and Raman, ICP- AES, laser particle size analyzer, oxygen and nitrogen analyzer, carbon/sulfur determinator and TG-DSC were employed for the characterization of the morphology, structure, chemical composition and thermal stability of the as-synthesized ZrC samples. The as-synthesized samples demonstrated high purity, low oxygen content and evenly distributed ZrC nano-powders with an average particle size of 50nm. In addition, the effects of endothermic rate and the possible chemical reaction mechanism were also discussed.展开更多
A preceramic polymer, polyzirconosaal (PZSA), was synthesized by the ligand-exchange reaction between polyzirconoxane (PZO) and salicyl alcohol (SA). The precursor was air-stable and exhibited excellent solubili...A preceramic polymer, polyzirconosaal (PZSA), was synthesized by the ligand-exchange reaction between polyzirconoxane (PZO) and salicyl alcohol (SA). The precursor was air-stable and exhibited excellent solubility and rheology. These properties are useful for the processing of C/C-ZrC composites v/a precursor infiltration and pyrolysis (PIP) process. The polymer to ceramic conversion was investigated by TG, XRD and TEM. Nanosized ZrC was formed by pyrolysis of this precursor at 1300 ℃ in argon with ceramic yield of 57.8%.展开更多
In this work, the Zr C-SiC composite coatings were co-deposited by chemical vapor deposition(CVD)using ZrCl4, MTS, CH4 and H2 as raw materials. The morphologies, compositions and phases of the composite coatings were ...In this work, the Zr C-SiC composite coatings were co-deposited by chemical vapor deposition(CVD)using ZrCl4, MTS, CH4 and H2 as raw materials. The morphologies, compositions and phases of the composite coatings were characterized by scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy(EDS) and X-ray diffraction(XRD). The results indicated that the morphologies, compositions and phases of the composite coatings were related to the deposition temperature, the flow rate of the carrier H2 gas, and the ratio of C/Zr. Moreover, the co-deposition mechanism of the composite coatings was also studied. It was found that different deposition temperatures resulted in different deposition mechanisms. At temperatures in the range of 1150–1250℃, the Zr C-SiC co-deposition was controlled by the surface kinetic process. At temperatures in the range of 1250–1400℃, the Zr C-SiC co-deposition was controlled by the mass transport process.展开更多
基金Funded by the Program for New Century Excellent Talents in University(No.NCET-12-0655)the Guangxi Natural Science Foundation(No.2014GXNSFFA118004)the Self-determined and Innovative Research Funds of WUT(Nos.136643002 and No.2013IV058)
文摘High quality nano-sized zirconium carbide (ZrC) powders were successfully fabricated via a developed chemical active dilution self-propagating high-temperature synthesis (SHS) method assisted by ball milling pretreatment process using traditional cheap zirconium dioxide powder (ZrO2), magnesium powder (Mg) and sucrose (C12H22Oll) as raw materials. FSEM, TEM, HRTEM, SAED, XRD, FTIR and Raman, ICP- AES, laser particle size analyzer, oxygen and nitrogen analyzer, carbon/sulfur determinator and TG-DSC were employed for the characterization of the morphology, structure, chemical composition and thermal stability of the as-synthesized ZrC samples. The as-synthesized samples demonstrated high purity, low oxygen content and evenly distributed ZrC nano-powders with an average particle size of 50nm. In addition, the effects of endothermic rate and the possible chemical reaction mechanism were also discussed.
基金supported by"the Fundamental Research Funds for the Central Universities"(No. 2011QNA20)
文摘A preceramic polymer, polyzirconosaal (PZSA), was synthesized by the ligand-exchange reaction between polyzirconoxane (PZO) and salicyl alcohol (SA). The precursor was air-stable and exhibited excellent solubility and rheology. These properties are useful for the processing of C/C-ZrC composites v/a precursor infiltration and pyrolysis (PIP) process. The polymer to ceramic conversion was investigated by TG, XRD and TEM. Nanosized ZrC was formed by pyrolysis of this precursor at 1300 ℃ in argon with ceramic yield of 57.8%.
文摘In this work, the Zr C-SiC composite coatings were co-deposited by chemical vapor deposition(CVD)using ZrCl4, MTS, CH4 and H2 as raw materials. The morphologies, compositions and phases of the composite coatings were characterized by scanning electron microscopy(SEM), energy dispersive X-ray spectroscopy(EDS) and X-ray diffraction(XRD). The results indicated that the morphologies, compositions and phases of the composite coatings were related to the deposition temperature, the flow rate of the carrier H2 gas, and the ratio of C/Zr. Moreover, the co-deposition mechanism of the composite coatings was also studied. It was found that different deposition temperatures resulted in different deposition mechanisms. At temperatures in the range of 1150–1250℃, the Zr C-SiC co-deposition was controlled by the surface kinetic process. At temperatures in the range of 1250–1400℃, the Zr C-SiC co-deposition was controlled by the mass transport process.