Beetles in the family Coccinellidae, commonly known as ladybugs, lady beetles, or ladybirds, are easily identifiable and popular beneficial insects. Current research aims to support conservation efforts of beneficial ...Beetles in the family Coccinellidae, commonly known as ladybugs, lady beetles, or ladybirds, are easily identifiable and popular beneficial insects. Current research aims to support conservation efforts of beneficial insects in agroecosystems by exploring genetic processes related to nutrition. As a part of this research, colonies of Coleomegilla maculata have been maintained in culture and inbred over many generations since 2009. One result of this inbreeding has been the discovery of novel morphological phenotypes unique to laboratory strains or present in wild populations at such low levels that they have not yet been described. One such phenotype is described here. The strain described here, ye (yellow elytra and eyes) was characterized with classical Mendelian breeding and digital image analysis. This phenotype differs from wild populations by possessing yellow pigment in the elytra and pale grey to white eyes. In contrast, wild populations of C. maculata possess pink or red pigmented elytra with black spots, and black eyes. C. maculata is not known to exhibit polymorphism in the field. Inheritance is autosomal and recessive. This species was not previously known to exhibit the dramatic variation of color described here. The strain is stable in the homozygous recessive form, and retains laboratory rearing characteristics similar to the wild type laboratory strain.展开更多
Leaf color mutants are ideal materials for studying many plant physiological and metabolic processes such as photosynthesis,photomorphogenesis,hormone physiology and disease resistance.In this study,the genetically st...Leaf color mutants are ideal materials for studying many plant physiological and metabolic processes such as photosynthesis,photomorphogenesis,hormone physiology and disease resistance.In this study,the genetically stable yellow-green leaf mutant ygl16 was identified from mutated“Xinong 1B”.Compared with the wild type,the pigment concentration and photosynthetic capacity of the ygl16 decreased significantly.The ultrastructural observation showed that the distribution of thylakoid lamellae was irregular in ygl16 chloroplasts,and the grana and matrix lamellae were blurred and loose in varied degrees,and the chloroplast structure was disordered,while the osmiophilic corpuscles increased.The results of the genetic analysis and mapping showed that the phenotype of ygl16 was controlled by a pair of recessive nuclear gene.The gene located in the 56Kb interval between RM25654 and R3 on the long arm of chromosome 10.The sequencing results showed that the 121st base of the first intron of the candidate gene OsPORB/FGL changed from A to T in the interval.qRT-PCR results showed that the expression of chlorophyll synthase-related genes in the mutant decreased.展开更多
Enhancing photosynthesis efficiency is considered as one of the most crucial targets during wheat breeding.However,the molecular basis underlying high photosynthesis efficiency is not well understood up to now.In this...Enhancing photosynthesis efficiency is considered as one of the most crucial targets during wheat breeding.However,the molecular basis underlying high photosynthesis efficiency is not well understood up to now.In this study,we investigated the protein expression profile of wheat Jimai5265yg mutant,which is a yellow-green mutant with chlorophylls b deficiency but high photosynthesis efficiency.Though TMT-labeling quantitative proteomics analysis,a total of 72 differential expressed proteins(DEPs)were obtained between the mutant and wild type(WT).GO analysis found that they significantly enriched in thylakoid membrane,pigment binding,magnesium chelatase activity and response to light intensity.KEGG analysis showed that they involved in photosynthesis-antenna protein as well as porphyrin and chlorophyll metabolism.Finally,118 RNA editing events were found between mutant and WT genotype.The A to C editing in the 3-UTR of TraesCS6D02G401500 lead to its high expression in mutant through removing the inhibition of tae-miR9781,which might have vital role in regulating the yellow-green mutant.This study provided some useful clues about the molecular basis of Jimai5265yg mutant as well as chlorophylls metabolism in wheat.展开更多
以籼稻93-11为背景的水稻突变体中发现一个黄绿叶突变体(yellow-green leaf,ygl10)。形态分析表明,与野生型93-11相比,ygl10突变体株高、穗长降低,结实率下降。叶绿素含量测定表明,ygl10突变体中叶绿素a、叶绿素b和类胡萝卜素含量均极...以籼稻93-11为背景的水稻突变体中发现一个黄绿叶突变体(yellow-green leaf,ygl10)。形态分析表明,与野生型93-11相比,ygl10突变体株高、穗长降低,结实率下降。叶绿素含量测定表明,ygl10突变体中叶绿素a、叶绿素b和类胡萝卜素含量均极显著降低,其中叶绿素b降幅最大,只有野生型的2%。叶绿体超微结构观察表明,突变体中类囊体和基粒片层数量明显减少。遗传分析结果表明,该黄绿叶突变体由一隐性核基因控制。进一步利用分子标记将ygl10定位在水稻第10染色体约380kb的区段内。对该区段内存在的ORF进行序列分析,发现编码叶绿素a氧化酶(chlorophyll a oxygenase)基因(OsCAO1)的第9个外显子存在5个碱基缺失,从而导致提前出现终止密码子,推测CAO1即为ygl10的候选基因。展开更多
文摘Beetles in the family Coccinellidae, commonly known as ladybugs, lady beetles, or ladybirds, are easily identifiable and popular beneficial insects. Current research aims to support conservation efforts of beneficial insects in agroecosystems by exploring genetic processes related to nutrition. As a part of this research, colonies of Coleomegilla maculata have been maintained in culture and inbred over many generations since 2009. One result of this inbreeding has been the discovery of novel morphological phenotypes unique to laboratory strains or present in wild populations at such low levels that they have not yet been described. One such phenotype is described here. The strain described here, ye (yellow elytra and eyes) was characterized with classical Mendelian breeding and digital image analysis. This phenotype differs from wild populations by possessing yellow pigment in the elytra and pale grey to white eyes. In contrast, wild populations of C. maculata possess pink or red pigmented elytra with black spots, and black eyes. C. maculata is not known to exhibit polymorphism in the field. Inheritance is autosomal and recessive. This species was not previously known to exhibit the dramatic variation of color described here. The strain is stable in the homozygous recessive form, and retains laboratory rearing characteristics similar to the wild type laboratory strain.
基金supported by grants from the Project of Creating High Quality,Disease Resistance and High Combining Ability CMS Lines(Grant No.cstc2018jscx-msybX0250)Chongqing Technology Innovation and Application Demonstration Project and the Project of High Photosynthetic Efficiency Rice Breeding Technology System(Grant No.2017YFD0100201)the National Key Research and Development Program“Seven Crops Breeding”.
文摘Leaf color mutants are ideal materials for studying many plant physiological and metabolic processes such as photosynthesis,photomorphogenesis,hormone physiology and disease resistance.In this study,the genetically stable yellow-green leaf mutant ygl16 was identified from mutated“Xinong 1B”.Compared with the wild type,the pigment concentration and photosynthetic capacity of the ygl16 decreased significantly.The ultrastructural observation showed that the distribution of thylakoid lamellae was irregular in ygl16 chloroplasts,and the grana and matrix lamellae were blurred and loose in varied degrees,and the chloroplast structure was disordered,while the osmiophilic corpuscles increased.The results of the genetic analysis and mapping showed that the phenotype of ygl16 was controlled by a pair of recessive nuclear gene.The gene located in the 56Kb interval between RM25654 and R3 on the long arm of chromosome 10.The sequencing results showed that the 121st base of the first intron of the candidate gene OsPORB/FGL changed from A to T in the interval.qRT-PCR results showed that the expression of chlorophyll synthase-related genes in the mutant decreased.
基金supported by the National Key Research and Development Plan[2017YFD0100706]National Natural Science Foundation of China[31871618].
文摘Enhancing photosynthesis efficiency is considered as one of the most crucial targets during wheat breeding.However,the molecular basis underlying high photosynthesis efficiency is not well understood up to now.In this study,we investigated the protein expression profile of wheat Jimai5265yg mutant,which is a yellow-green mutant with chlorophylls b deficiency but high photosynthesis efficiency.Though TMT-labeling quantitative proteomics analysis,a total of 72 differential expressed proteins(DEPs)were obtained between the mutant and wild type(WT).GO analysis found that they significantly enriched in thylakoid membrane,pigment binding,magnesium chelatase activity and response to light intensity.KEGG analysis showed that they involved in photosynthesis-antenna protein as well as porphyrin and chlorophyll metabolism.Finally,118 RNA editing events were found between mutant and WT genotype.The A to C editing in the 3-UTR of TraesCS6D02G401500 lead to its high expression in mutant through removing the inhibition of tae-miR9781,which might have vital role in regulating the yellow-green mutant.This study provided some useful clues about the molecular basis of Jimai5265yg mutant as well as chlorophylls metabolism in wheat.
文摘以籼稻93-11为背景的水稻突变体中发现一个黄绿叶突变体(yellow-green leaf,ygl10)。形态分析表明,与野生型93-11相比,ygl10突变体株高、穗长降低,结实率下降。叶绿素含量测定表明,ygl10突变体中叶绿素a、叶绿素b和类胡萝卜素含量均极显著降低,其中叶绿素b降幅最大,只有野生型的2%。叶绿体超微结构观察表明,突变体中类囊体和基粒片层数量明显减少。遗传分析结果表明,该黄绿叶突变体由一隐性核基因控制。进一步利用分子标记将ygl10定位在水稻第10染色体约380kb的区段内。对该区段内存在的ORF进行序列分析,发现编码叶绿素a氧化酶(chlorophyll a oxygenase)基因(OsCAO1)的第9个外显子存在5个碱基缺失,从而导致提前出现终止密码子,推测CAO1即为ygl10的候选基因。