The rheological behavior of semi-solid AZ91D at steady state is studied usinga Couette type viscometer in the present paper. The results show that the apparent viscosity ofsemi-solid AZ91D at the steady state increase...The rheological behavior of semi-solid AZ91D at steady state is studied usinga Couette type viscometer in the present paper. The results show that the apparent viscosity ofsemi-solid AZ91D at the steady state increases with the solid fraction increasing, and goes upsharply when the solid fraction reaches a certain value, which is called critical fraction. Inaddition, the apparent viscosity of semi-solid AZ91D at the steady state takes on a distinctdowntrend with the shearing rate increasing, which indicates a strong shear thinning property. Inaddition, the critical solid fraction becomes higher under larger shearing rate, owing to the moreglobular shape of the solid particles. Based on the present experiment results, an empiricalequation is built as that, relating the steady state apparent viscosity of semi-solid AZ91D with thesolid fraction f_s and shearing rate gamma at the same time: eta_(app)=10.74 exp (6.95 f_s)gamma^(-0.86).展开更多
It is an effective way to use coal slime as fuel for circulating fluidized bed boilers, which will not only solve its pollution to the environment, but also turn waste to treasure. In order to provide basic technical ...It is an effective way to use coal slime as fuel for circulating fluidized bed boilers, which will not only solve its pollution to the environment, but also turn waste to treasure. In order to provide basic technical information for transportation of coal slime from the coal preparation plant to the boiler, this paper experimentally studied the rheological behaviors of coal slime produced by filter-pressing. By using a rotational viscometer, the influences of water content, temperature, and shear time on the rheological behaviors of coal slime were investigated. Experimental results show that the coal slime will behave like Bingham plastics with low water content and like Bingham pseudo-plastics with 37.5% water content,while like pseudo-plastics with 40% water content. This indicates that the water content of coal slime must be controlled in consideration of both transportation resistance and combustion efficiency. Study results also show that, the apparent viscosity of coal slime at 5℃ is about 1.5–1.7 times of that at 40℃ for water contents 32%–37.5%, while the influence of temperature can be neglected when the water content is 40%. With increasing of water content, the influences of shear time on the apparent viscosity of coal slime becomes less. When the water content is more than 30%, the effect of shear time is negligible. It indicates that water content has the most important influence on the rheological behaviors of coal slime. There must be an optimal water content in considering conveying resistance and combustion efficiency. The environmental temperature must also be considered in coal slime transportation.展开更多
The curing process of epoxy asphalt was analyzed by Fourier transform infrared (FT-IR) spectroscopy. Effect of curing temperature on viscosity of epoxy asphalt, and changes of mechanical properties with curing time ...The curing process of epoxy asphalt was analyzed by Fourier transform infrared (FT-IR) spectroscopy. Effect of curing temperature on viscosity of epoxy asphalt, and changes of mechanical properties with curing time were investigated. The evolution of concentration of epoxy band was followed as a function of the applied curing process.The experimental results indicate that the curing reaction rate of epoxy asphalt is invariable before 70 min at 120 ℃, and it decreases when curing time exceeds 70 min. The viscosity of epoxy asphalt increases slowly with curing time at initial curing stage. But it increases quickly after initial curing stage and the initial curing time decreases as the curing temperature increases, The tensile strength increases slowly at incipient curing stage and increases rapidly when curing time is form 20 min to 70 min. The elongation at break shows a decrease with curing time, but it exceeds 200% after cured.展开更多
Researches on the boundary shape of fluid flow in porous media play an important role in engineering practices, such as petroleum exploitation, nuclear waste disposal and groundwater contamination. In this paper, six ...Researches on the boundary shape of fluid flow in porous media play an important role in engineering practices, such as petroleum exploitation, nuclear waste disposal and groundwater contamination. In this paper, six types of artificial porous samples (emery jade) with different porosities are manufactured. With the background of slow flow in porous media, laboratory experiments are carried out by observing the movement of five types of fluids with different dynamic viscosities in various types of porous media. A digital video recorder is employed to record the complete process of the fluid flow in the porous media. Based on the digital photos of the moving boundaries of fluid flow in porous media, the average displacement and fractal dimension of the moving boundary are estimated for different combinations of porosity and dynamic viscosity. Moreover, the evolution behavior of the average velocity and fractal dimension of the moving boundary with time is known. The statistical relations of the average velocity, the fractal dimension of the moving boundary and the porosity of porous media and the dynamic vis- cosity of fluids are proposed in this paper. It is shown that the front shape of the moving boundary of fluid flow in porous media is an integrated result of the porosity of porous media and the dynamic viscosity of fluids.展开更多
基金The present study was supported by the National Key Basic Research and Development Programme of China (Project No. G2000067202).
文摘The rheological behavior of semi-solid AZ91D at steady state is studied usinga Couette type viscometer in the present paper. The results show that the apparent viscosity ofsemi-solid AZ91D at the steady state increases with the solid fraction increasing, and goes upsharply when the solid fraction reaches a certain value, which is called critical fraction. Inaddition, the apparent viscosity of semi-solid AZ91D at the steady state takes on a distinctdowntrend with the shearing rate increasing, which indicates a strong shear thinning property. Inaddition, the critical solid fraction becomes higher under larger shearing rate, owing to the moreglobular shape of the solid particles. Based on the present experiment results, an empiricalequation is built as that, relating the steady state apparent viscosity of semi-solid AZ91D with thesolid fraction f_s and shearing rate gamma at the same time: eta_(app)=10.74 exp (6.95 f_s)gamma^(-0.86).
基金the National Key Technology R&D Program for the 12th Five-Year Plan of China (No. 2014BAB01B03)the National Natural Science Foundation of China (No. 51304192)
文摘It is an effective way to use coal slime as fuel for circulating fluidized bed boilers, which will not only solve its pollution to the environment, but also turn waste to treasure. In order to provide basic technical information for transportation of coal slime from the coal preparation plant to the boiler, this paper experimentally studied the rheological behaviors of coal slime produced by filter-pressing. By using a rotational viscometer, the influences of water content, temperature, and shear time on the rheological behaviors of coal slime were investigated. Experimental results show that the coal slime will behave like Bingham plastics with low water content and like Bingham pseudo-plastics with 37.5% water content,while like pseudo-plastics with 40% water content. This indicates that the water content of coal slime must be controlled in consideration of both transportation resistance and combustion efficiency. Study results also show that, the apparent viscosity of coal slime at 5℃ is about 1.5–1.7 times of that at 40℃ for water contents 32%–37.5%, while the influence of temperature can be neglected when the water content is 40%. With increasing of water content, the influences of shear time on the apparent viscosity of coal slime becomes less. When the water content is more than 30%, the effect of shear time is negligible. It indicates that water content has the most important influence on the rheological behaviors of coal slime. There must be an optimal water content in considering conveying resistance and combustion efficiency. The environmental temperature must also be considered in coal slime transportation.
文摘The curing process of epoxy asphalt was analyzed by Fourier transform infrared (FT-IR) spectroscopy. Effect of curing temperature on viscosity of epoxy asphalt, and changes of mechanical properties with curing time were investigated. The evolution of concentration of epoxy band was followed as a function of the applied curing process.The experimental results indicate that the curing reaction rate of epoxy asphalt is invariable before 70 min at 120 ℃, and it decreases when curing time exceeds 70 min. The viscosity of epoxy asphalt increases slowly with curing time at initial curing stage. But it increases quickly after initial curing stage and the initial curing time decreases as the curing temperature increases, The tensile strength increases slowly at incipient curing stage and increases rapidly when curing time is form 20 min to 70 min. The elongation at break shows a decrease with curing time, but it exceeds 200% after cured.
基金the National Natural Science Foundation of China (Grant Nos. 10372112, 50674092, 50221402)National Basic Research Program of China (Grant No. 2002CB412701)+1 种基金 New Century Excellent Talents in University (Grant No. NCET-04-0491) Excellent Young Teachers Program of Ministry of Education of China
文摘Researches on the boundary shape of fluid flow in porous media play an important role in engineering practices, such as petroleum exploitation, nuclear waste disposal and groundwater contamination. In this paper, six types of artificial porous samples (emery jade) with different porosities are manufactured. With the background of slow flow in porous media, laboratory experiments are carried out by observing the movement of five types of fluids with different dynamic viscosities in various types of porous media. A digital video recorder is employed to record the complete process of the fluid flow in the porous media. Based on the digital photos of the moving boundaries of fluid flow in porous media, the average displacement and fractal dimension of the moving boundary are estimated for different combinations of porosity and dynamic viscosity. Moreover, the evolution behavior of the average velocity and fractal dimension of the moving boundary with time is known. The statistical relations of the average velocity, the fractal dimension of the moving boundary and the porosity of porous media and the dynamic vis- cosity of fluids are proposed in this paper. It is shown that the front shape of the moving boundary of fluid flow in porous media is an integrated result of the porosity of porous media and the dynamic viscosity of fluids.