The V-system is a complete orthogonal system of functions defined on the interval [0, 1], generated by finite Legendre polynomials and the dilation and translation of a function generator, which consists of a finite n...The V-system is a complete orthogonal system of functions defined on the interval [0, 1], generated by finite Legendre polynomials and the dilation and translation of a function generator, which consists of a finite number of continuous and discontinuous functions. The V-system has interesting properties, such as orthogonality, symmetry, completeness and short compact support. It is shown in this paper that the V-system is essentially a special multi-wavelet basis. As a result, some basic properties of the V-system are established through the well-developed theory of multi-wavelets. From this point of view, more other V-systems are constructed.展开更多
基金Supported by National Natural Science Foundation of China (Grant Nos.11071261,60873088 and 10911120394)
文摘The V-system is a complete orthogonal system of functions defined on the interval [0, 1], generated by finite Legendre polynomials and the dilation and translation of a function generator, which consists of a finite number of continuous and discontinuous functions. The V-system has interesting properties, such as orthogonality, symmetry, completeness and short compact support. It is shown in this paper that the V-system is essentially a special multi-wavelet basis. As a result, some basic properties of the V-system are established through the well-developed theory of multi-wavelets. From this point of view, more other V-systems are constructed.