A discrete iterative map model of V^2C control boost converter was established to study the dynamical behaviors of the converter. By using parameter space map and bifurcation diagram, the effects of circuit parameters...A discrete iterative map model of V^2C control boost converter was established to study the dynamical behaviors of the converter. By using parameter space map and bifurcation diagram, the effects of circuit parameters on the bifurcation behaviors of V^2C control and current-mode control boost converters were analyzed. The phase portraits and time-domain waveforms of the V^2C control boost converter were obtained by Runge-Kutta algorithm through piecewise smooth switching model. The research results indicate that V^2C control boost converters can evolve into periodic and chaotic behaviors, and show weaker nonlinear behaviors than current-mode control boost converters.展开更多
文摘通过分析扰动后电感电流变化和输出电容电荷变化,导出V^2恒定导通时间(Constant On-Time,COT)控制Buck变换器发生次谐波振荡的临界条件,进一步建立了V^2-COT控制Buck变换器的分段线性模型,通过随输出电容等效串联电阻(Equivalent Series Resistance,ESR)变化的分岔图分析了变换器的稳定机理。最后,制作实验样机,验证了理论分析的结果。
基金The National Natural Science Foundation of China (No.50677056)the Natural Science Foundations of Jiangsu Province (No.BK2009105)
文摘A discrete iterative map model of V^2C control boost converter was established to study the dynamical behaviors of the converter. By using parameter space map and bifurcation diagram, the effects of circuit parameters on the bifurcation behaviors of V^2C control and current-mode control boost converters were analyzed. The phase portraits and time-domain waveforms of the V^2C control boost converter were obtained by Runge-Kutta algorithm through piecewise smooth switching model. The research results indicate that V^2C control boost converters can evolve into periodic and chaotic behaviors, and show weaker nonlinear behaviors than current-mode control boost converters.