Based on the polarization analysis of teleseismic data,SKS (SKKS) fast-wave directions and delay times between fast and slow shear waves were determined for each of the 111 seismic stations from both permanent and tem...Based on the polarization analysis of teleseismic data,SKS (SKKS) fast-wave directions and delay times between fast and slow shear waves were determined for each of the 111 seismic stations from both permanent and temporary broadband seismograph networks deployed in the Ordos Block and its margins.Both the Silver and Chan and stacking analysis methods were used.In this way,an image of upper mantle anisotropy in the Ordos Block and its margins was acquired.In the western and northern margins of the Ordos Block,the fast-wave directions are consistently NW-SE.The fast-wave directions are mainly NWW-SEE and EW in the southern margin of the Ordos Block.In the eastern margin of the Ordos Block,the fast-wave directions are generally EW,although some run NEE-SWW or NWW-SEE.In the Ordos Block,the fast-wave directions trend near N-S in the north,but switch to near EW in the south.The delay time between fast and slow waves falls into the interval 0.48-1.50 s,and the average delay time at the stations in the Ordos Block is less than that in its margins.We suggest that the anisotropy of the stable Ordos Block is mainly caused by "fossil" anisotropy frozen in the ancient North China Craton.The NE-trending push of the northeastern margin of the Tibetan Plateau has caused NW-SE-trending lithospheric extension in the western and northern margins of the Ordos Block,and made the upper mantle flow southeastwards.This in turn has resulted in the alignment of the upper mantle peridotite lattice with the direction of material deformation.In the southern margin of the Ordos Block,the collision between the North China and Yangtze blocks resulted in the fast-wave direction running parallel to the collision boundary and the Qinling Orogen.Combining this with the APM and velocity structure of the Qinling Orogen,we propose that eastward-directed asthenospheric-mantle channel flow may have occurred beneath the Qinling Orogen.In the eastern margin of the Ordos Block,the complex anisotropic characteristics of the Fenhe Graben and Taihang Orogen展开更多
We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation. The data we use are from the Chin...We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation. The data we use are from the China National Seismic Network, global and regional networks and PASSCAL stations in the region. We first acquire cross-correlation seismograms between all possible station pairs. We then measure the Rayleigh wave group and phase dispersion curves using a frequency-time analysis method from 8 s to 60 s. After that, Rayleigh wave group and phase velocity dispersion maps on 1°by 1°spatial grids are obtained at different periods. Finally, we invert these maps for the 3-D shear wave velocity structure of the crust and upper mantle beneath China at each grid node. The inversion results show large-scale structures that correlate well with surface geology. Near the surface, velocities in major basins are anomalously slow, consistent with the thick sediments. East-west contrasts are striking in Moho depth. There is also a fast mid-to-lower crust and mantle lithosphere beneath the major basins surrounding the Tibetan plateau (TP) and Tianshan (Junggar, Tarim, Ordos, and Sichuan). These strong blocks, therefore, appear to play an important role in confining the deformation of the TP and constraining its geometry to form its current triangular shape. In northwest TP in Qiangtang, slow anomalies extend from the crust to the mantle lithosphere. Meanwhile, widespread, a prominent low-velocity zone is observed in the middle crust beneath most of the central, eastern and southeastern Tibetan plateau, consistent with a weak (and perhaps mobile) middle crust.展开更多
From April, 2003 to September, 2004, a passive broadband seismic array consisting of 60 stations was deployed over the Tianshan orogenic belt by State Key Laboratory of Earthquake Dynamics, Institute of Geology, China...From April, 2003 to September, 2004, a passive broadband seismic array consisting of 60 stations was deployed over the Tianshan orogenic belt by State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration. Among them, 51 stations make up an about 500-km-long profile across the Tianshan Mountains from Kuytun to Kuqa. The receiver function profile and S-wave velocity structure of the crust and upper mantle down to 100 km deep are obtained by using the re-ceiver function method (Liu et al. 1996, 2000). The main results can be summarized as follows: (1) A clear mountain root does not exist beneath the Tianshan Mountains, and the crust-mantle boundaries underneath the stations mostly have transitional structures. This implies that the material differentia-tion between the crust and mantle is not yet accomplished and the orogenic process is still going on. (2) The crust beneath the Tianshan Mountains has laterally blocked structures in direction perpendicular to the mountain strike, and the crust-mantle boundary has a clear dislocation structure. Both of them correspond to each other. (3) The offsets of the Moho discontinuity are highly correlated to the tectonic borders on the surface and that corresponding to the frontal southern Tianshan fault reaches to 14 km. This manifests that large vertical divergent movement took place between different blocks. This sup-ports the discontinuous model of the Tianshan orogeny, and the Tarim block subduction is restricted only to the southern side of the South Tianshan. (4) Inside the upper and middle crust of the Tianshan Mountains exist several low-velocity bodies correlated with high seismicity located on the moun-tain-basin jointures on both sides of the mountain and between different blocks, and the low-velocity bodies on the mountain-basin jointures are inclined obviously to the mountain. This implies that the low-velocity bodies may be correlated closely to the thrust and subduction of the basins on both sides of the mountain, the spli展开更多
Background: Dysfunctional spinal circuit may play a role in the pathophysiology ofarnyotrophic lateral sclerosis (ALS). The purpose of this study was to use F waves for assessment of segmental motoneuronal excitabi...Background: Dysfunctional spinal circuit may play a role in the pathophysiology ofarnyotrophic lateral sclerosis (ALS). The purpose of this study was to use F waves for assessment of segmental motoneuronal excitability following upper motor neuron (UMN) dysfunctions in ALS. Meihods: We studied the F waves of 152 ulnar nerves recorded fi'om abductor digiti minimi in 82 patients with ALS. Two groups of hands were defined based on the presence or absence of pyramidal signs in the same upper limb. The group with pyramidal signs in tile upper limbs was designated as the P group, and the group without pyramidal signs in the upper limbs was designated as the NP group. Results: The mean (P 〈 0.001), median (P 〈 0.001) and maximum (P = 0.035) F wave amplitudes, mean (P 〈 0.001 ), median (P 〈 0.001) and maximum (P - 0.003) F/M amplitude ratio, index repeating neuron (P 〈 0.001 ) and index repeater F waves (P 〈 0.001 ) of the P group were significantly increased compared with the NP group. No significant differences were identified for F wave chronodispersion (P= 0.628), mean F wave latency (P 0.151 ), minimum F wave latency (P = 0.211 ), maximum F wave latency (13 = 0. 199). F wave persistence (P = 0.738). F wave duration (P = 0. 152), F wave conduction velocity (P = 0.813) and number of giant F waves (P = 0.072) between the two groups. Conclusions" In this study, increased F wave amplitude, F/M amplitude ratio and number of repeater F waves reflected enhanced segmental lnotoneuronal excitability following UMN dysfunctions in ALS.展开更多
The significant underestimation of sea surface temperature (SST) and the temperature in the upper ocean is one of common problems in present climate models. The influence of the wave-induced mixing on SST and the te...The significant underestimation of sea surface temperature (SST) and the temperature in the upper ocean is one of common problems in present climate models. The influence of the wave-induced mixing on SST and the temperature in the upper ocean was examined based on a global climate model. The results from the model coupled with wave-induced mixing showed a significant improvement in the simulation of SST and the temperature in the upper ocean compared with those of the original model without wave effects. Although there has still a cold bias, the new simulation is much closer to the climatology, especially in the northern ocean and tropical ocean. This study indicates that some important physical processes in the accurate simulation of the ocean may be ignored in present climate models, and the wave-induced mixing is one of those factors. Thus, the wave-induced mixing ( or the effect of surface waves) should be incorporated properly into climate models in order to simulate or forecast the ocean, then climate system, more accurately.展开更多
The three dimensional S wave velocity structure of the crust and upper mantle of Chinese mainland and its neighboring region is obtained by genetic algorithm of surface wave tomography, with smoothness constraint, bas...The three dimensional S wave velocity structure of the crust and upper mantle of Chinese mainland and its neighboring region is obtained by genetic algorithm of surface wave tomography, with smoothness constraint, based on 25 wave group velocities for the periods from 10 s to 92 s, measured from long period Rayleigh waves recorded by 11 stations of CDSN and 12 digital seismometers surrounding China. The S wave velocity image is shown on two latitudinal sections along 30°N and 38°N, two longitudinal sections along 90°E and 120°E, and four horizontal slices at the different depths.展开更多
Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods ...Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods from 10 s to 92 s, were measured by multi-filter. Their distribution at 25 central periods within the region of 18~54N, 70~140E was inverted by Dimtar-Yanovskaya method. Within the period from 10 s to 15.9 s, the group velocity distribution is laterally inhomogeneous and is closely related to geotectonic units, with two low velocity zones located in the Tarim basin and the East China Sea and its north regions, respectively. From 21 s to 33 s, the framework of tectonic blocks is revealed. From 36.6 s to 40 s, the lithospheric subdivision of the Chinese mainland is obviously uncovered, with distinct boundaries among the South-North seismic belt, the Tibetan plateau, the North China, the South China and the Northeast China. Four cross-sections of group velocity distribution with period along 30N, 38N, 90E and 120E, are discussed, respectively, which display the basic features of the crust and upper mantle of the Chinese mainland and its neighboring regions. There are distinguished velocity differences among the different tectonic blocks. There are low-velocity-zones (LVZ) in the middle crust of the eastern Tibetan plateau, high velocity featured as stable platform in the Tarim basin and the Yangtze platform, shallow and thick low-velocity-zone in the upper mantle of the North China. The upper mantle LVZ in the East China Sea and the Japan Sea is related to the frictional heat from the subduction of the Philippine slab and the strong extension since the Himalayan orogenic period.展开更多
BACKGROUND Active myofascial trigger points(TrPs)often occur in the upper region of the upper trapezius(UT)muscle.These TrPs can be a significant source of neck,shoulder,and upper back pain and headaches.These TrPs an...BACKGROUND Active myofascial trigger points(TrPs)often occur in the upper region of the upper trapezius(UT)muscle.These TrPs can be a significant source of neck,shoulder,and upper back pain and headaches.These TrPs and their related pain and disability can adversely affect an individual’s everyday routine functioning,work-related productivity,and general quality of life.AIM To investigate the effects of instrument assisted soft tissue mobilization(IASTM)vs extracorporeal shock wave therapy(ESWT)on the TrPs of the UT muscle.METHODS A randomized,single-blind,comparative clinical study was conducted at the Medical Center of the Egyptian Railway Station in Cairo.Forty patients(28 females and 12 males),aged between 20-years-old and 40-years-old,with active myofascial TrPs in the UT muscle were randomly assigned to two equal groups(A and B).Group A received IASTM,while group B received ESWT.Each group was treated twice weekly for 2 weeks.Both groups received muscle energy technique for the UT muscle.Patients were evaluated twice(pre-and posttreatment)for pain intensity using the visual analogue scale and for pain pressure threshold(PPT)using a pressure algometer.RESULTS Comparing the pre-and post-treatment mean values for all variables for group A,there were significant differences in pain intensity for TrP1 and TrP2(P=0.0001)and PPT for TrP1(P=0.0002)and TrP2(P=0.0001).Also,for group B,there were significant differences between the pre-and post-treatment pain intensity for TrP1 and TrP2 and PPT for TrP1 and TrP2(P=0.0001).There were no significant differences between the two groups in the post-treatment mean values of pain intensity for TrP1(P=0.9)and TrP2(P=0.76)and PPT for TrP1(P=0.09)and for TrP2(P=0.91).CONCLUSION IASTM and ESWT are effective methods for improving pain and PPT in patients with UT muscle TrPs.There is no significant difference between either treatment method.展开更多
BACKGROUND Complex decongestive therapy(CDT)is currently recommended as the standard treatment for lymphedema.CDT is a four-step detumescence therapy that can effectively treat upper limb lymphedema after breast cance...BACKGROUND Complex decongestive therapy(CDT)is currently recommended as the standard treatment for lymphedema.CDT is a four-step detumescence therapy that can effectively treat upper limb lymphedema after breast cancer surgery,and is considered non-invasive,painless and without side effects.AIM To determine the effectiveness of a six-step CDT involving a foam granule bandage for the treatment of upper extremity lymphedema pressure after breast cancer surgical intervention.METHODS The study included 100 patients with upper extremity lymphedema after breast cancer surgery.The surgical methods were mastectomy plus axillary lymph node dissection and breast preservation plus sentinel lymph node biopsy.The study population was further divided into the experimental group and control group with 50 cases in each group.The control group was given conventional CDT(four-step method),which included skin care,freehand lymphatic drainage,foam granule pressurized bandage,and functional exercise.In the experimental group,a six-step CDT method was applied that involved a foam particle bandage combined with air wave pressure therapy in addition to the four steps of conventional CDT.Patients in both groups were given one course of treatment daily(20 times),and the changes in body moisture and subjective symptoms were measured before and after treatment,preoperatively and 20 times after treatment.RESULTS No statistically significant differences in 50-Hz bioelectrical impedance and extracellular moisture ratio were observed between the two groups before treatment,suggesting comparability of the baseline data.After treatment,the 50-Hz bioelectrical impedance of the experimental group was significantly higher than that in the control group,and the extracellular moisture ratio was significantly lower than that in the control group.A comparison of the differences between the two groups before and after treatment indicated that the treatment effect in the experimental group was better than that in the control group.After 20 treatments,acco展开更多
This paper investigates the effects of surface drag on upper-level front with a three-dimensional nonhy- drostatic mesoscale numerical model (MM5). To this end, a new and simple potential vorticity intrusion (PVI)...This paper investigates the effects of surface drag on upper-level front with a three-dimensional nonhy- drostatic mesoscale numerical model (MM5). To this end, a new and simple potential vorticity intrusion (PVI) index is proposed to quantitatively describe the extent and path that surface drag affects upper-level front. From a PV perspective, the formation of the upper-level front is illustrated as the tropopause folding happens from the stratosphere. The PVI index shows a good correlation with the minimum surface pres- sure, and tends to increase with the deepening of the surface cyclone and upper-level front. The surface drag acts to damp and delay the development of upper-level front, which could reduce the growth rate of the PVI index. However, the damping presents different effects in different development stages. It is the most significant during the rapid development stage of the surface cyclone. Compared with no surface drag cases, the tropopause is less inclined to intrude into the troposphere due to the surface drag. Positive feedback between the surface cyclone and upper-level front could accelerate the development of the frontal system.展开更多
In order to study the propagation laws of acoustic wave of coal samples from the Upper Permian Xuanwei Formation in the east of Yunnan Province,China,under saturated water and dry conditions,the basic physical paramet...In order to study the propagation laws of acoustic wave of coal samples from the Upper Permian Xuanwei Formation in the east of Yunnan Province,China,under saturated water and dry conditions,the basic physical parameters,acoustic parameters and anisotropic parameters were obtained through the experiments.Based on FFT and wavelet analysis theory,the spectral characteristics of coal samples under different conditions were studied.The results show that physical parameters of coal samples in different directions have different values,that is,the anisotropy of coal samples is obvious.When the coal samples are saturated with water,the acoustic velocities and the attenuation coefficient increase,whereas the dominant frequency decreases.The signal amplitude of the frequency domain significantly decreases,that is,the internal structure of coal samples is damaged.The P-wave velocity and S-wave velocity increase with the increase of the confining pressure,whereas the anisotropy parameters decrease with the increase of the confining pressure.Overall,this study provides the basis to understand basic acoustic information and anisotropy characteristics of coal samples.展开更多
This paper is devoted to the study of a three-dimensional delayed system with nonlocal diffusion and partial quasi-monotonicity. By developing a new definition of upper-lower solutions and a new cross iteration scheme...This paper is devoted to the study of a three-dimensional delayed system with nonlocal diffusion and partial quasi-monotonicity. By developing a new definition of upper-lower solutions and a new cross iteration scheme, we establish some existence results of traveling wave solutions. The results are applied to a nonlocal diffusion model which takes the three-species Lotka-Volterra model as its special case.展开更多
This paper is concerned with stability of traveling wave fronts for nonlocal diffusive system.We adopt L^(1),-weighted,L^(1)-and L^(2)-energy estimates for the perturbation systems,and show that all solutions of...This paper is concerned with stability of traveling wave fronts for nonlocal diffusive system.We adopt L^(1),-weighted,L^(1)-and L^(2)-energy estimates for the perturbation systems,and show that all solutions of the Cauchy problem for the considered systems converge exponentially to traveling wave fronts provided that the initial perturbations around the traveling wave fronts belong to a suitable weighted Sobolev spaces.展开更多
By using a linear baroclinic model(LBM),this study investigates the different Rossby wave train(RWT)patterns associated with the Tibetan Plateau(TP)upper-atmospheric heat source(TPUHS)that is anomalously shallower and...By using a linear baroclinic model(LBM),this study investigates the different Rossby wave train(RWT)patterns associated with the Tibetan Plateau(TP)upper-atmospheric heat source(TPUHS)that is anomalously shallower and deeper in boreal summer.Observational results indicate the different RWT patterns between the developing and decaying periods of synoptic TPUHS events,when the anomalous TPUHS develops from a relatively shallower to a deeper TP heat source.Based on the different vertical heating profiles between these two periods in observation,this study forces the LBM with prescribed TPUHS profiles to mimic a shallower and deeper summer TP heat source.The results show that the atmospheric responses to a shallower and deeper TPUHS do exhibit different RWT patterns that largely resemble those in observation.Namely,corresponding RWT pattern to a shallower TPUHS stretches from the TP to the west coast of America,while that to a deeper TPUHS extends from the TP region to Alaska.展开更多
基金supported by National Natural Science Foundation of China (Grant Nos. 40904023 and 90914005)the Special Project for the Fundamental R & D of Institute of Geophysics,China Earthquake Administration (Grant Nos. DQJB06B06, DQJB10B16)the Special Program of the Ministry of Science and Technology of China (Grant No. 2006FY110100)
文摘Based on the polarization analysis of teleseismic data,SKS (SKKS) fast-wave directions and delay times between fast and slow shear waves were determined for each of the 111 seismic stations from both permanent and temporary broadband seismograph networks deployed in the Ordos Block and its margins.Both the Silver and Chan and stacking analysis methods were used.In this way,an image of upper mantle anisotropy in the Ordos Block and its margins was acquired.In the western and northern margins of the Ordos Block,the fast-wave directions are consistently NW-SE.The fast-wave directions are mainly NWW-SEE and EW in the southern margin of the Ordos Block.In the eastern margin of the Ordos Block,the fast-wave directions are generally EW,although some run NEE-SWW or NWW-SEE.In the Ordos Block,the fast-wave directions trend near N-S in the north,but switch to near EW in the south.The delay time between fast and slow waves falls into the interval 0.48-1.50 s,and the average delay time at the stations in the Ordos Block is less than that in its margins.We suggest that the anisotropy of the stable Ordos Block is mainly caused by "fossil" anisotropy frozen in the ancient North China Craton.The NE-trending push of the northeastern margin of the Tibetan Plateau has caused NW-SE-trending lithospheric extension in the western and northern margins of the Ordos Block,and made the upper mantle flow southeastwards.This in turn has resulted in the alignment of the upper mantle peridotite lattice with the direction of material deformation.In the southern margin of the Ordos Block,the collision between the North China and Yangtze blocks resulted in the fast-wave direction running parallel to the collision boundary and the Qinling Orogen.Combining this with the APM and velocity structure of the Qinling Orogen,we propose that eastward-directed asthenospheric-mantle channel flow may have occurred beneath the Qinling Orogen.In the eastern margin of the Ordos Block,the complex anisotropic characteristics of the Fenhe Graben and Taihang Orogen
基金supported by National Science Foundation of United States (EAR-0838188) and Department of Geology, UIUCsupported by NSF-EAR award 0944022 and a sub-award from NSF-OISE 0730154
文摘We determine the three-dimensional shear wave velocity structure of the crust and upper mantle in China using Green's functions obtained from seismic ambient noise cross-correlation. The data we use are from the China National Seismic Network, global and regional networks and PASSCAL stations in the region. We first acquire cross-correlation seismograms between all possible station pairs. We then measure the Rayleigh wave group and phase dispersion curves using a frequency-time analysis method from 8 s to 60 s. After that, Rayleigh wave group and phase velocity dispersion maps on 1°by 1°spatial grids are obtained at different periods. Finally, we invert these maps for the 3-D shear wave velocity structure of the crust and upper mantle beneath China at each grid node. The inversion results show large-scale structures that correlate well with surface geology. Near the surface, velocities in major basins are anomalously slow, consistent with the thick sediments. East-west contrasts are striking in Moho depth. There is also a fast mid-to-lower crust and mantle lithosphere beneath the major basins surrounding the Tibetan plateau (TP) and Tianshan (Junggar, Tarim, Ordos, and Sichuan). These strong blocks, therefore, appear to play an important role in confining the deformation of the TP and constraining its geometry to form its current triangular shape. In northwest TP in Qiangtang, slow anomalies extend from the crust to the mantle lithosphere. Meanwhile, widespread, a prominent low-velocity zone is observed in the middle crust beneath most of the central, eastern and southeastern Tibetan plateau, consistent with a weak (and perhaps mobile) middle crust.
基金the National Natural Science Foundation of China (Grant No.40234043)
文摘From April, 2003 to September, 2004, a passive broadband seismic array consisting of 60 stations was deployed over the Tianshan orogenic belt by State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration. Among them, 51 stations make up an about 500-km-long profile across the Tianshan Mountains from Kuytun to Kuqa. The receiver function profile and S-wave velocity structure of the crust and upper mantle down to 100 km deep are obtained by using the re-ceiver function method (Liu et al. 1996, 2000). The main results can be summarized as follows: (1) A clear mountain root does not exist beneath the Tianshan Mountains, and the crust-mantle boundaries underneath the stations mostly have transitional structures. This implies that the material differentia-tion between the crust and mantle is not yet accomplished and the orogenic process is still going on. (2) The crust beneath the Tianshan Mountains has laterally blocked structures in direction perpendicular to the mountain strike, and the crust-mantle boundary has a clear dislocation structure. Both of them correspond to each other. (3) The offsets of the Moho discontinuity are highly correlated to the tectonic borders on the surface and that corresponding to the frontal southern Tianshan fault reaches to 14 km. This manifests that large vertical divergent movement took place between different blocks. This sup-ports the discontinuous model of the Tianshan orogeny, and the Tarim block subduction is restricted only to the southern side of the South Tianshan. (4) Inside the upper and middle crust of the Tianshan Mountains exist several low-velocity bodies correlated with high seismicity located on the moun-tain-basin jointures on both sides of the mountain and between different blocks, and the low-velocity bodies on the mountain-basin jointures are inclined obviously to the mountain. This implies that the low-velocity bodies may be correlated closely to the thrust and subduction of the basins on both sides of the mountain, the spli
文摘Background: Dysfunctional spinal circuit may play a role in the pathophysiology ofarnyotrophic lateral sclerosis (ALS). The purpose of this study was to use F waves for assessment of segmental motoneuronal excitability following upper motor neuron (UMN) dysfunctions in ALS. Meihods: We studied the F waves of 152 ulnar nerves recorded fi'om abductor digiti minimi in 82 patients with ALS. Two groups of hands were defined based on the presence or absence of pyramidal signs in the same upper limb. The group with pyramidal signs in tile upper limbs was designated as the P group, and the group without pyramidal signs in the upper limbs was designated as the NP group. Results: The mean (P 〈 0.001), median (P 〈 0.001) and maximum (P = 0.035) F wave amplitudes, mean (P 〈 0.001 ), median (P 〈 0.001) and maximum (P - 0.003) F/M amplitude ratio, index repeating neuron (P 〈 0.001 ) and index repeater F waves (P 〈 0.001 ) of the P group were significantly increased compared with the NP group. No significant differences were identified for F wave chronodispersion (P= 0.628), mean F wave latency (P 0.151 ), minimum F wave latency (P = 0.211 ), maximum F wave latency (13 = 0. 199). F wave persistence (P = 0.738). F wave duration (P = 0. 152), F wave conduction velocity (P = 0.813) and number of giant F waves (P = 0.072) between the two groups. Conclusions" In this study, increased F wave amplitude, F/M amplitude ratio and number of repeater F waves reflected enhanced segmental lnotoneuronal excitability following UMN dysfunctions in ALS.
基金The Key Project of the National Natural Science Foundation of China under contract No.40730842the National Key Basic Research Program of China under contract No.2006CB403605
文摘The significant underestimation of sea surface temperature (SST) and the temperature in the upper ocean is one of common problems in present climate models. The influence of the wave-induced mixing on SST and the temperature in the upper ocean was examined based on a global climate model. The results from the model coupled with wave-induced mixing showed a significant improvement in the simulation of SST and the temperature in the upper ocean compared with those of the original model without wave effects. Although there has still a cold bias, the new simulation is much closer to the climatology, especially in the northern ocean and tropical ocean. This study indicates that some important physical processes in the accurate simulation of the ocean may be ignored in present climate models, and the wave-induced mixing is one of those factors. Thus, the wave-induced mixing ( or the effect of surface waves) should be incorporated properly into climate models in order to simulate or forecast the ocean, then climate system, more accurately.
基金Chinese Joint Seismological Science Foundation (9507413) the Climbing Plan Project (95-S-05-01) from the State Department of Science and Technology China.
文摘The three dimensional S wave velocity structure of the crust and upper mantle of Chinese mainland and its neighboring region is obtained by genetic algorithm of surface wave tomography, with smoothness constraint, based on 25 wave group velocities for the periods from 10 s to 92 s, measured from long period Rayleigh waves recorded by 11 stations of CDSN and 12 digital seismometers surrounding China. The S wave velocity image is shown on two latitudinal sections along 30°N and 38°N, two longitudinal sections along 90°E and 120°E, and four horizontal slices at the different depths.
基金Climb Project Continental Dynamics of East Asia and Joint Seismological Science Foundation of China (9507413).
文摘Based on the long period digital surface wave data recorded by 11 CDSN stations and 11 IRIS stations, the dispersion curves of the group velocities of fundamental mode Rayleigh waves along 647 paths, with the periods from 10 s to 92 s, were measured by multi-filter. Their distribution at 25 central periods within the region of 18~54N, 70~140E was inverted by Dimtar-Yanovskaya method. Within the period from 10 s to 15.9 s, the group velocity distribution is laterally inhomogeneous and is closely related to geotectonic units, with two low velocity zones located in the Tarim basin and the East China Sea and its north regions, respectively. From 21 s to 33 s, the framework of tectonic blocks is revealed. From 36.6 s to 40 s, the lithospheric subdivision of the Chinese mainland is obviously uncovered, with distinct boundaries among the South-North seismic belt, the Tibetan plateau, the North China, the South China and the Northeast China. Four cross-sections of group velocity distribution with period along 30N, 38N, 90E and 120E, are discussed, respectively, which display the basic features of the crust and upper mantle of the Chinese mainland and its neighboring regions. There are distinguished velocity differences among the different tectonic blocks. There are low-velocity-zones (LVZ) in the middle crust of the eastern Tibetan plateau, high velocity featured as stable platform in the Tarim basin and the Yangtze platform, shallow and thick low-velocity-zone in the upper mantle of the North China. The upper mantle LVZ in the East China Sea and the Japan Sea is related to the frictional heat from the subduction of the Philippine slab and the strong extension since the Himalayan orogenic period.
文摘BACKGROUND Active myofascial trigger points(TrPs)often occur in the upper region of the upper trapezius(UT)muscle.These TrPs can be a significant source of neck,shoulder,and upper back pain and headaches.These TrPs and their related pain and disability can adversely affect an individual’s everyday routine functioning,work-related productivity,and general quality of life.AIM To investigate the effects of instrument assisted soft tissue mobilization(IASTM)vs extracorporeal shock wave therapy(ESWT)on the TrPs of the UT muscle.METHODS A randomized,single-blind,comparative clinical study was conducted at the Medical Center of the Egyptian Railway Station in Cairo.Forty patients(28 females and 12 males),aged between 20-years-old and 40-years-old,with active myofascial TrPs in the UT muscle were randomly assigned to two equal groups(A and B).Group A received IASTM,while group B received ESWT.Each group was treated twice weekly for 2 weeks.Both groups received muscle energy technique for the UT muscle.Patients were evaluated twice(pre-and posttreatment)for pain intensity using the visual analogue scale and for pain pressure threshold(PPT)using a pressure algometer.RESULTS Comparing the pre-and post-treatment mean values for all variables for group A,there were significant differences in pain intensity for TrP1 and TrP2(P=0.0001)and PPT for TrP1(P=0.0002)and TrP2(P=0.0001).Also,for group B,there were significant differences between the pre-and post-treatment pain intensity for TrP1 and TrP2 and PPT for TrP1 and TrP2(P=0.0001).There were no significant differences between the two groups in the post-treatment mean values of pain intensity for TrP1(P=0.9)and TrP2(P=0.76)and PPT for TrP1(P=0.09)and for TrP2(P=0.91).CONCLUSION IASTM and ESWT are effective methods for improving pain and PPT in patients with UT muscle TrPs.There is no significant difference between either treatment method.
文摘BACKGROUND Complex decongestive therapy(CDT)is currently recommended as the standard treatment for lymphedema.CDT is a four-step detumescence therapy that can effectively treat upper limb lymphedema after breast cancer surgery,and is considered non-invasive,painless and without side effects.AIM To determine the effectiveness of a six-step CDT involving a foam granule bandage for the treatment of upper extremity lymphedema pressure after breast cancer surgical intervention.METHODS The study included 100 patients with upper extremity lymphedema after breast cancer surgery.The surgical methods were mastectomy plus axillary lymph node dissection and breast preservation plus sentinel lymph node biopsy.The study population was further divided into the experimental group and control group with 50 cases in each group.The control group was given conventional CDT(four-step method),which included skin care,freehand lymphatic drainage,foam granule pressurized bandage,and functional exercise.In the experimental group,a six-step CDT method was applied that involved a foam particle bandage combined with air wave pressure therapy in addition to the four steps of conventional CDT.Patients in both groups were given one course of treatment daily(20 times),and the changes in body moisture and subjective symptoms were measured before and after treatment,preoperatively and 20 times after treatment.RESULTS No statistically significant differences in 50-Hz bioelectrical impedance and extracellular moisture ratio were observed between the two groups before treatment,suggesting comparability of the baseline data.After treatment,the 50-Hz bioelectrical impedance of the experimental group was significantly higher than that in the control group,and the extracellular moisture ratio was significantly lower than that in the control group.A comparison of the differences between the two groups before and after treatment indicated that the treatment effect in the experimental group was better than that in the control group.After 20 treatments,acco
基金Supported by the National Key Basic Research Program of China(2012CB417201)National Natural Science Foundation of China(41275059,41275055,and 41461164008)
文摘This paper investigates the effects of surface drag on upper-level front with a three-dimensional nonhy- drostatic mesoscale numerical model (MM5). To this end, a new and simple potential vorticity intrusion (PVI) index is proposed to quantitatively describe the extent and path that surface drag affects upper-level front. From a PV perspective, the formation of the upper-level front is illustrated as the tropopause folding happens from the stratosphere. The PVI index shows a good correlation with the minimum surface pres- sure, and tends to increase with the deepening of the surface cyclone and upper-level front. The surface drag acts to damp and delay the development of upper-level front, which could reduce the growth rate of the PVI index. However, the damping presents different effects in different development stages. It is the most significant during the rapid development stage of the surface cyclone. Compared with no surface drag cases, the tropopause is less inclined to intrude into the troposphere due to the surface drag. Positive feedback between the surface cyclone and upper-level front could accelerate the development of the frontal system.
基金This research is supported by the Young Scientific and Technological Innovation Team of Rock Physics in Unconventional Strata of Southwest Petroleum University(No.2018CXTD13)the 19th issue college students’Extracurricular opening experiment key projects,Southwest Petroleum University(No.KSZ19207)Innovation and enterprise fund of School of Geoscience and Technology,Southwest Petroleum University(No.DCXP1930).
文摘In order to study the propagation laws of acoustic wave of coal samples from the Upper Permian Xuanwei Formation in the east of Yunnan Province,China,under saturated water and dry conditions,the basic physical parameters,acoustic parameters and anisotropic parameters were obtained through the experiments.Based on FFT and wavelet analysis theory,the spectral characteristics of coal samples under different conditions were studied.The results show that physical parameters of coal samples in different directions have different values,that is,the anisotropy of coal samples is obvious.When the coal samples are saturated with water,the acoustic velocities and the attenuation coefficient increase,whereas the dominant frequency decreases.The signal amplitude of the frequency domain significantly decreases,that is,the internal structure of coal samples is damaged.The P-wave velocity and S-wave velocity increase with the increase of the confining pressure,whereas the anisotropy parameters decrease with the increase of the confining pressure.Overall,this study provides the basis to understand basic acoustic information and anisotropy characteristics of coal samples.
基金Supported by the Natural Science Foundation of China (11171120)the Doctoral Program of Higher Education of China (20094407110001)Natural Science Foundation of Guangdong Province (10151063101000003)
文摘This paper is devoted to the study of a three-dimensional delayed system with nonlocal diffusion and partial quasi-monotonicity. By developing a new definition of upper-lower solutions and a new cross iteration scheme, we establish some existence results of traveling wave solutions. The results are applied to a nonlocal diffusion model which takes the three-species Lotka-Volterra model as its special case.
基金supported by the China Postdoctoral Science Foundation(No.2020M670963)supported by the Natural Science Foundation of China(No.12071297)the Natural Science Foundation of Shanghai(No.18ZR1426500).
文摘This paper is concerned with stability of traveling wave fronts for nonlocal diffusive system.We adopt L^(1),-weighted,L^(1)-and L^(2)-energy estimates for the perturbation systems,and show that all solutions of the Cauchy problem for the considered systems converge exponentially to traveling wave fronts provided that the initial perturbations around the traveling wave fronts belong to a suitable weighted Sobolev spaces.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences [grant number XDA17010105]the National Natural Science Foundation of China [grant numbers 91437105,41430533,and 41575041]the Key Research Program of Frontier Sciences [grant number QYZDY-SSW-DQC018]
文摘By using a linear baroclinic model(LBM),this study investigates the different Rossby wave train(RWT)patterns associated with the Tibetan Plateau(TP)upper-atmospheric heat source(TPUHS)that is anomalously shallower and deeper in boreal summer.Observational results indicate the different RWT patterns between the developing and decaying periods of synoptic TPUHS events,when the anomalous TPUHS develops from a relatively shallower to a deeper TP heat source.Based on the different vertical heating profiles between these two periods in observation,this study forces the LBM with prescribed TPUHS profiles to mimic a shallower and deeper summer TP heat source.The results show that the atmospheric responses to a shallower and deeper TPUHS do exhibit different RWT patterns that largely resemble those in observation.Namely,corresponding RWT pattern to a shallower TPUHS stretches from the TP to the west coast of America,while that to a deeper TPUHS extends from the TP region to Alaska.