Gyroscopes are one of the most interesting and everlasting nonlinear nonautonomous dynamical systems that exhibit very complex dynamical behavior such as chaos. In this paper, the problem of robust stabilization of th...Gyroscopes are one of the most interesting and everlasting nonlinear nonautonomous dynamical systems that exhibit very complex dynamical behavior such as chaos. In this paper, the problem of robust stabilization of the nonlinear non-autonomous gyroscopes in a given finite time is studied. It is assumed that the gyroscope system is perturbed by model uncertainties, external disturbances, and unknown parameters. Besides, the effects of input nonlinearities are taken into account. Appropriate adaptive laws are proposed to tackle the unknown parameters. Based on the adaptive laws and the finite-time control theory, discontinuous finite-time control laws are proposed to ensure the finite-time stability of the system. The finite-time stability and convergence of the closed-loop system are analytically proved. Some numerical simulations are presented to show the efficiency of the proposed finite-time control scheme and to validate the theoretical results.展开更多
A one-phase Stefan problem for the nonhomogeneous heat equation with the source term depending on an unknown parameter p(t) is considered. The existence and uniqueness of the solution (p, s, u) are also demonstrated.
文摘Gyroscopes are one of the most interesting and everlasting nonlinear nonautonomous dynamical systems that exhibit very complex dynamical behavior such as chaos. In this paper, the problem of robust stabilization of the nonlinear non-autonomous gyroscopes in a given finite time is studied. It is assumed that the gyroscope system is perturbed by model uncertainties, external disturbances, and unknown parameters. Besides, the effects of input nonlinearities are taken into account. Appropriate adaptive laws are proposed to tackle the unknown parameters. Based on the adaptive laws and the finite-time control theory, discontinuous finite-time control laws are proposed to ensure the finite-time stability of the system. The finite-time stability and convergence of the closed-loop system are analytically proved. Some numerical simulations are presented to show the efficiency of the proposed finite-time control scheme and to validate the theoretical results.
基金supported by the National Science Foundation of China(61172043)the Key Program of Shaanxi Provincial Natural Science for Basic Research(2011JZ015)Research Fund of Shaanxi Key Laboratory of Electronic Information System Integration(201115Y15)
文摘A one-phase Stefan problem for the nonhomogeneous heat equation with the source term depending on an unknown parameter p(t) is considered. The existence and uniqueness of the solution (p, s, u) are also demonstrated.