期刊文献+

一维抛物型方程反问题的变分迭代解法 被引量:2

The variational iteration method for solving an inverse problem of one-dimensional parabolic equation
下载PDF
导出
摘要 应用变分迭代法研究了第一边值条件下抛物型偏微分方程反问题的数值解法.在第一边值条件的基础上,利用附加条件确定抛物型偏微分方程中的一个未知参数和方程的精确解.两个例子说明了这种方法的有效性. In this paper,the variational iteration method is used to study the exact solution of an inverse parabolic problem.Using the additional given data,this method gets the exact solution and unknown parameter of parabolic partial difference with equation with the first boundary conditions.Two examples show the efficiency of the variational iteration method.
机构地区 琼州学院数学系
出处 《周口师范学院学报》 CAS 2016年第2期34-38,共5页 Journal of Zhoukou Normal University
基金 琼州学院青年教师科研基金资助项目(No.QYQN201519) 琼州学院青年教师科研基金资助项目(No.QYQN201520)
关键词 变分迭代法 反问题 抛物型方程 拉格朗日乘子 未知参数 variational iteration method inverse problem parabolic equation Lagrange multipliers unknown parameter
  • 相关文献

参考文献19

  • 1JA MacBain,J B Bednar. Existence and uniqueness properties for one - dimensionalmagnetotelluric inversion problem[J]. Journal of mathematical physics?1986 ?27(2) :645 - 649. 被引量:1
  • 2JA Macbain. Inversion theory for a parametrized diffusion problem[J]. SIAM Journal on Applied Mathematics?1987,47(6):1386 - 1391. 被引量:1
  • 3PrilepkoA I,Orlovskii D G. Determination of the evolution parameter of an equation and inverse problems of mathemat-ical physics[J]. Differential Equations,1985,21(1) :96 - 104. 被引量:1
  • 4CannonJ R,Lin Y. Determination of parameter p (t) in Holder classes for somesemilinear parabolic equations[J]. In-verse Problems* 1988?4(3) :595. 被引量:1
  • 5CannonJ R, Lin Y, Wang S. Determination of a control parameter in a parabolic partial differential equation[J]. TheJournal of the Australian Mathematical Society. Series B. Applied Mathematics,1991,33(2) : 149 - 163. 被引量:1
  • 6CannonJ R, Lin Y,Xu S. Numerical procedures for the determination of an unknown coefficient in semi - linear parabol-ic differential equations[J]. Inverse Problems, 1994,10(2) :227. 被引量:1
  • 7李义军..抛物型方程反问题的数值解法研究[D].长沙理工大学,2008:
  • 8TatariM, Dehghan M. He’s variational iteration method for computing a control parameter in a semi - linear inverseparabolic equation[J]. Chaos,Solitons Fractals,2007,33(2) :671 - 677. 被引量:1
  • 9MaY J,Fu C L,Zhang Y X. Identification of an unknown source depending on both time and space variables by avaria-tional method[J]. Applied Mathematical Modelling, 2012 ,36(10):5080 - 5090. 被引量:1
  • 10ZhaoY, Xiao A. Variational iteration method for singular perturbation initial value problems[J]. Computer PhysicsCommunications,2010,181(5) : 947 - 956. 被引量:1

二级参考文献15

  • 1I. Podlubny. Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications[M ], New York: Academic Press, 1999. 被引量:1
  • 2J. H. He. Approximate analytical solution for seepage flow with fractional derivatives in porous media[ J ], Comput. Methods Appl. Mech. Engrg. 1998 (167) : 57 - 68. 被引量:1
  • 3S. Momani, Z. Odibat. Analytical approach to linear fractional partail differential equations arising in fluild mechanics[J], Phys. Lett. A , 2006 (355) :271 - 279. 被引量:1
  • 4I. Mustafa. The approximate and exact solutions of the space - and time -fractional Burgers equations with initial conditions by variational iteration method[J], J. Math. Anal. Appl. 2008 (345) : 476 - 484. 被引量:1
  • 5M. TattoO, M. Dehghan. On the convergence of He's variational iteration method[J], J. Comput. Appl. Math. 2007 (207) :121 - 128. 被引量:1
  • 6S. Momani, A. Qaralleh. An efficient method for solving systems of fractional integro- differential equations[ J ], Comput. Math. Appl. 2006 (52):459 - 470. 被引量:1
  • 7E. A. Rawashdeh. Numerical solution of fractional integro -differential equations by collocation method[ J], Appl. Math. Comput. 2006 (176):1 - 6. 被引量:1
  • 8M. Inokuti, H. Sekine, T. Mura. General use of the lagrange multiplier in nonlinear mathematical physics,, in: S. Nemat - Nasser (Ed.), Variational Method in the mechanics of Solids [ C ], New York: Pergamon Press, 1978,156 - 163. 被引量:1
  • 9T. Allahviranloo, S. Abbasbandy, H. Rouhparvarc, The exact solutions of fuzzy wave-like equations with variable coefficients by a variational iteration method [J]. Applied Soft Computing. 2011 ( 11 ) 2186 - 2192. 被引量:1
  • 10He, J. H. , Variational iteration method-some recent results and new interpretation[ J ]. J. Comput. Appl. Math. 2007 (207) :3 - 17. 被引量:1

共引文献4

同被引文献1

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部