Titanium(Ti) and its alloys are used extensively in orthopedic implants because of their excellent biocompatibility,mechanical properties and corrosion resistance. However,titanium-based implant materials face many se...Titanium(Ti) and its alloys are used extensively in orthopedic implants because of their excellent biocompatibility,mechanical properties and corrosion resistance. However,titanium-based implant materials face many severe complications,such as implant loosening due to poor osseointegration and bacterial infections,which may lead to implant failure. Hence,preparing a biomaterial surface,which enhances the interactions with host cells and inhibits bacterial adhesion,may be an optimal strategy to reduce the incidence of implant failure. This study aims to improve osseointegration and confer antibacterial properties on Ti through a combination of two surface modifications including nanostructuring generated by acid etching and ultraviolet(UV) light treatment.Our results showed that without UV treatment,the acid etching treatment of Ti surface was effective at both improving the adhesion of bone mesenchymal stem cells(BMSCs) and increasing bacterial adhesion. A further UV treatment of the acid-etched surface however,not only significantly improved the cell adhesion but also inhibited bacterial adhesion. The acid-etched nanostructured titanium with UV treatment also showed a significant enhancement on cell proliferation,alkaline phosphatase(ALP) activity and mineralization. These results suggest that such nanostructured materials with UV treatment can be expected to have a good potential in orthopedic applications.展开更多
To manage potential microbial risks and meet increasingly strict drinking water health standards,UV treatment has attracted increasing attention for use in drinking water systems in China.However,the effects of UV tre...To manage potential microbial risks and meet increasingly strict drinking water health standards,UV treatment has attracted increasing attention for use in drinking water systems in China.However,the effects of UV treatment on microbial control and disinfection byproducts(DBPs)formation in real municipal drinking water systems are poorly understood.Here,we collected water samples from three real drinking water systems in Beijing and Tianjin to investigate the impacts of UV treatment on microbial control and DBP formation.We employed heterotrophic plate count(HPC),flow cytometry(FCM),quantitative PCR analysis,and high-throughput sequencing to measure microorganisms in the samples.Different trends were observed between HPC and total cell count(measured by FCM),indicating that a single indicator could not reflect the real degree of biological re-growth in drinking water distribution systems(DWDSs).A significant increase in the 16S rRNA gene concentration was observed when the UV system was stopped.Besides,the bacterial community composition was similar at the phylum level but differed markedly at the genera level among the three DWDSs.Some chlorine-resistant bacteria,including potential pathogens(e.g.,Acinetobacter)showed a high relative abundance when the UV system was turned off.It can be concluded that UV treatment can mitigate microbial re-growth to some extent.Finally,UV treatment had a limited influence on the formation of DBPs,including trihalomethanes,haloacetic acids,and nitrogenated DBPs.The findings of this study may help to understand the performance of UV treatment in real drinking water systems.展开更多
A TiO2 paste was prepared by mixing commercial TiO2 (P25), ethanol, distilled water and a small amount of Ti (IV) tetrai-sopropoxide (TTIP), following by a hydrothermal treatment. Before hydrothermal treatment, a stir...A TiO2 paste was prepared by mixing commercial TiO2 (P25), ethanol, distilled water and a small amount of Ti (IV) tetrai-sopropoxide (TTIP), following by a hydrothermal treatment. Before hydrothermal treatment, a stirring for 48 h can prevent cracking TiO2 films. TTIP significantly promote the chemical connection between TiO2 particles and its adherence to the substrate, the TTIP amount of 6 mol% is suitable. UV irradiation can remove some impurities and water from the TiO2 film with an optimal time of 2 h. Transmission electron microscopy, X-ray diffraction, scanning electron microscopy and photovoltaic tests are charac- terized and measured. Shortcircuit current density, open-circuit voltage, fill factor and photoelectric conversion efficiencies for the fabricated flexible dye-sensitized solar cell are 7.20 mA cm-2, 0.769 V, 0.686 and 3.84%, respectively, under irradiation with a simulated solar light of 100 mW cm-2.展开更多
Oxide/metal/oxide(OMO)and its derivatives are considered as the promising alternatives to achieve high performance transparent electrodes(TEs).The percolation thickness and conductivity of the metal layer are very cru...Oxide/metal/oxide(OMO)and its derivatives are considered as the promising alternatives to achieve high performance transparent electrodes(TEs).The percolation thickness and conductivity of the metal layer are very crucial for the optoelectrical properties of any OMO TE.Here,we report a facile method to promote the initial growth of the metal layer by improving the interfacial wettability between O-M interface.By subsequently combined with high-quality zinc oxide(ZnO)films,ZnO/Cu/ZnO TEs that have not only low sheet resistance(19.3/sq)but also enhanced thermal stability can be obtained,with a performance of an average transmittance of 84.4%over the visible spectral range of 400–800 nm.展开更多
UV radiation and ozonation were investigated as disinfection alternatives for the wastewater treatment plant. The inactivation of total and fecal coliforms using ozone and ultraviolet radiation as separate treatments ...UV radiation and ozonation were investigated as disinfection alternatives for the wastewater treatment plant. The inactivation of total and fecal coliforms using ozone and ultraviolet radiation as separate treatments was evaluated. Different ozone concentrations (3 to 40 mg O3/L) were applied and UV fluencies ranging from 8.5 to 12 mJ/cm2 at different pH values (from 5 to 9) were tested. Best results were obtained for ozone doses near 20 mg/min with removals of 72% and 78% of fecal and total coliforms, respectively. The ozone also was capable of oxidizing organic matter in the effluent measured as COD (the highest removal obtained was 36% for 20 mg O3/min). Maximum bacterial resistance was observed at pH 7 in both cases. The UV light offered a high bacterial inactivation (over 80%) and the lowest bacterial inactivation was observed at pH 7. Finally, we obtained the electric energy per order (EEO, kWh/m3/order), defined as the electric energy (kW-h) required to degrade a contaminant by one order of magnitude in a unit volume of contaminated water, being noteworthy that EEO values for the UV process resulted were lower than those determined for the process with ozone in all the water flow tested.展开更多
ZnO作为一种典型的透明导电氧化物(Transparent conductive oxide,TCO)材料,具有同氧化铟锡(Indium tin oxide,ITO)相比拟的光电性能,其原料丰富、绿色环保、易于制备、生成成本低等优点使ZnO成为最有希望替代ITO的材料。本文以玻璃为衬...ZnO作为一种典型的透明导电氧化物(Transparent conductive oxide,TCO)材料,具有同氧化铟锡(Indium tin oxide,ITO)相比拟的光电性能,其原料丰富、绿色环保、易于制备、生成成本低等优点使ZnO成为最有希望替代ITO的材料。本文以玻璃为衬底,利用量子点种子层作为缓冲层,采用传统水热方法制备了低成本ZnO透明导电薄膜,采用特殊的紫外光辐照工艺对薄膜进行后处理,探索薄膜生长参数和紫外光辐照处理工艺对其透光率和导电性的影响。结果表明,紫外辐照处理不影响薄膜的透光性能,而使材料的方块电阻降低3个数量级,数值从没处理时的1.5×105Ω/□降低到150Ω/□,极大地提高了薄膜的电导率,为ZnO薄膜材料电导率的提高提供了一个简单高效的途径。展开更多
基金supported by the National Key Basic Research Program of China (Grant No.2012CB619106)the National Natural Science Foundation of China (Grant No.81271957)+1 种基金the Military Medical Research "12th Five-Year Plan" General Program of China (Grant No.cws11c268)Guangdong Provincial Science and Technology Project,China (Grant No.2012A030400064)
文摘Titanium(Ti) and its alloys are used extensively in orthopedic implants because of their excellent biocompatibility,mechanical properties and corrosion resistance. However,titanium-based implant materials face many severe complications,such as implant loosening due to poor osseointegration and bacterial infections,which may lead to implant failure. Hence,preparing a biomaterial surface,which enhances the interactions with host cells and inhibits bacterial adhesion,may be an optimal strategy to reduce the incidence of implant failure. This study aims to improve osseointegration and confer antibacterial properties on Ti through a combination of two surface modifications including nanostructuring generated by acid etching and ultraviolet(UV) light treatment.Our results showed that without UV treatment,the acid etching treatment of Ti surface was effective at both improving the adhesion of bone mesenchymal stem cells(BMSCs) and increasing bacterial adhesion. A further UV treatment of the acid-etched surface however,not only significantly improved the cell adhesion but also inhibited bacterial adhesion. The acid-etched nanostructured titanium with UV treatment also showed a significant enhancement on cell proliferation,alkaline phosphatase(ALP) activity and mineralization. These results suggest that such nanostructured materials with UV treatment can be expected to have a good potential in orthopedic applications.
基金supported by the National Natural Science Foundation of China(Nos.51778323,51761125013 and51290284)the National Science and Technology Major Project of China(Nos.2012ZX07404-002,2017ZX07108-003 and 2017ZX07502-003)
文摘To manage potential microbial risks and meet increasingly strict drinking water health standards,UV treatment has attracted increasing attention for use in drinking water systems in China.However,the effects of UV treatment on microbial control and disinfection byproducts(DBPs)formation in real municipal drinking water systems are poorly understood.Here,we collected water samples from three real drinking water systems in Beijing and Tianjin to investigate the impacts of UV treatment on microbial control and DBP formation.We employed heterotrophic plate count(HPC),flow cytometry(FCM),quantitative PCR analysis,and high-throughput sequencing to measure microorganisms in the samples.Different trends were observed between HPC and total cell count(measured by FCM),indicating that a single indicator could not reflect the real degree of biological re-growth in drinking water distribution systems(DWDSs).A significant increase in the 16S rRNA gene concentration was observed when the UV system was stopped.Besides,the bacterial community composition was similar at the phylum level but differed markedly at the genera level among the three DWDSs.Some chlorine-resistant bacteria,including potential pathogens(e.g.,Acinetobacter)showed a high relative abundance when the UV system was turned off.It can be concluded that UV treatment can mitigate microbial re-growth to some extent.Finally,UV treatment had a limited influence on the formation of DBPs,including trihalomethanes,haloacetic acids,and nitrogenated DBPs.The findings of this study may help to understand the performance of UV treatment in real drinking water systems.
基金supported by the National High Technology Research and Development Program of China (2009AA03Z217)the National Natu-ral Science Foundation of China (50842027, 90922028)
文摘A TiO2 paste was prepared by mixing commercial TiO2 (P25), ethanol, distilled water and a small amount of Ti (IV) tetrai-sopropoxide (TTIP), following by a hydrothermal treatment. Before hydrothermal treatment, a stirring for 48 h can prevent cracking TiO2 films. TTIP significantly promote the chemical connection between TiO2 particles and its adherence to the substrate, the TTIP amount of 6 mol% is suitable. UV irradiation can remove some impurities and water from the TiO2 film with an optimal time of 2 h. Transmission electron microscopy, X-ray diffraction, scanning electron microscopy and photovoltaic tests are charac- terized and measured. Shortcircuit current density, open-circuit voltage, fill factor and photoelectric conversion efficiencies for the fabricated flexible dye-sensitized solar cell are 7.20 mA cm-2, 0.769 V, 0.686 and 3.84%, respectively, under irradiation with a simulated solar light of 100 mW cm-2.
基金supported financially by the“youth talent project”of OUC.
文摘Oxide/metal/oxide(OMO)and its derivatives are considered as the promising alternatives to achieve high performance transparent electrodes(TEs).The percolation thickness and conductivity of the metal layer are very crucial for the optoelectrical properties of any OMO TE.Here,we report a facile method to promote the initial growth of the metal layer by improving the interfacial wettability between O-M interface.By subsequently combined with high-quality zinc oxide(ZnO)films,ZnO/Cu/ZnO TEs that have not only low sheet resistance(19.3/sq)but also enhanced thermal stability can be obtained,with a performance of an average transmittance of 84.4%over the visible spectral range of 400–800 nm.
文摘UV radiation and ozonation were investigated as disinfection alternatives for the wastewater treatment plant. The inactivation of total and fecal coliforms using ozone and ultraviolet radiation as separate treatments was evaluated. Different ozone concentrations (3 to 40 mg O3/L) were applied and UV fluencies ranging from 8.5 to 12 mJ/cm2 at different pH values (from 5 to 9) were tested. Best results were obtained for ozone doses near 20 mg/min with removals of 72% and 78% of fecal and total coliforms, respectively. The ozone also was capable of oxidizing organic matter in the effluent measured as COD (the highest removal obtained was 36% for 20 mg O3/min). Maximum bacterial resistance was observed at pH 7 in both cases. The UV light offered a high bacterial inactivation (over 80%) and the lowest bacterial inactivation was observed at pH 7. Finally, we obtained the electric energy per order (EEO, kWh/m3/order), defined as the electric energy (kW-h) required to degrade a contaminant by one order of magnitude in a unit volume of contaminated water, being noteworthy that EEO values for the UV process resulted were lower than those determined for the process with ozone in all the water flow tested.
文摘ZnO作为一种典型的透明导电氧化物(Transparent conductive oxide,TCO)材料,具有同氧化铟锡(Indium tin oxide,ITO)相比拟的光电性能,其原料丰富、绿色环保、易于制备、生成成本低等优点使ZnO成为最有希望替代ITO的材料。本文以玻璃为衬底,利用量子点种子层作为缓冲层,采用传统水热方法制备了低成本ZnO透明导电薄膜,采用特殊的紫外光辐照工艺对薄膜进行后处理,探索薄膜生长参数和紫外光辐照处理工艺对其透光率和导电性的影响。结果表明,紫外辐照处理不影响薄膜的透光性能,而使材料的方块电阻降低3个数量级,数值从没处理时的1.5×105Ω/□降低到150Ω/□,极大地提高了薄膜的电导率,为ZnO薄膜材料电导率的提高提供了一个简单高效的途径。