The mortality rate of neurological disorders is increasing globally,and natural antioxidant geniposidic acid(GPA)holds great potential in the treatment of neuronal oxidative damage.Nevertheless,its inherent instabilit...The mortality rate of neurological disorders is increasing globally,and natural antioxidant geniposidic acid(GPA)holds great potential in the treatment of neuronal oxidative damage.Nevertheless,its inherent instability constrains its pragmatic utilization.Herein,we introduced a drug delivery system capable of protecting unstable natural active compounds from degradation.Among the various methods for preparing drug-loaded microspheres,the emulsification-solvent evaporation technique is one of the most commonly employed due to its efficiency and simplicity.Nevertheless,this method results in microspheres with heterogeneous particle sizes.To address this limitation,we developed a two-step emulsification method involving stirring and homogenization.Using the biocompatible,synthetic,biodegradable polymer polycaprolactone(PCL)as the drug delivery carrier,we prepared GPA-loaded PCL microspheres via the two-step emulsification method.The results demonstrated that the microspheres possessed uniform particle size(polydispersity index=0.12),excellent drug loading capacity(∼4.86%),sustained drug release profiles(∼68.55%in 264 h),and biocompatibility(cell viability>85%).The in vitro tests showed that the microspheres exerted antioxidant effects by scavenging reactive oxygen species(ROS)induced by oxidative stress,thereby protecting neuronal cells from oxidative damage.This work presents a promising new approach for the treatment of neuronal oxidative damage.展开更多
基金supported by the Fundamental Research Funds for the Central Universities(grant No.PTYX202449).
文摘The mortality rate of neurological disorders is increasing globally,and natural antioxidant geniposidic acid(GPA)holds great potential in the treatment of neuronal oxidative damage.Nevertheless,its inherent instability constrains its pragmatic utilization.Herein,we introduced a drug delivery system capable of protecting unstable natural active compounds from degradation.Among the various methods for preparing drug-loaded microspheres,the emulsification-solvent evaporation technique is one of the most commonly employed due to its efficiency and simplicity.Nevertheless,this method results in microspheres with heterogeneous particle sizes.To address this limitation,we developed a two-step emulsification method involving stirring and homogenization.Using the biocompatible,synthetic,biodegradable polymer polycaprolactone(PCL)as the drug delivery carrier,we prepared GPA-loaded PCL microspheres via the two-step emulsification method.The results demonstrated that the microspheres possessed uniform particle size(polydispersity index=0.12),excellent drug loading capacity(∼4.86%),sustained drug release profiles(∼68.55%in 264 h),and biocompatibility(cell viability>85%).The in vitro tests showed that the microspheres exerted antioxidant effects by scavenging reactive oxygen species(ROS)induced by oxidative stress,thereby protecting neuronal cells from oxidative damage.This work presents a promising new approach for the treatment of neuronal oxidative damage.