期刊文献+
共找到22篇文章
< 1 2 >
每页显示 20 50 100
基于Tri-Training半监督分类算法的研究 被引量:9
1
作者 张雁 吕丹桔 吴保国 《计算机技术与发展》 2013年第7期77-79,83,共4页
在实际应用中,容易获取大量的未标记样本数据,而样本数据是有限的,因此,半监督分类算法成为研究者关注的热点。文中在协同训练Tri-Training算法的基础上,提出了采用两个不同的训练分类器的Simple-Tri-Training方法和对标记数据进行编辑... 在实际应用中,容易获取大量的未标记样本数据,而样本数据是有限的,因此,半监督分类算法成为研究者关注的热点。文中在协同训练Tri-Training算法的基础上,提出了采用两个不同的训练分类器的Simple-Tri-Training方法和对标记数据进行编辑的Edit-Tri-Training方法,给出了这三种分类方法与监督分类SVM的分类实验结果的比较和分析。实验表明,无标记数据的引入,在一定程度上提高了分类的性能;初始训练集和分类器的选取以及标记过程中数据编辑技术,都是影响半监督分类稳定性和性能的关键点。 展开更多
关键词 半监督分类 tritraining算法 数据编辑
下载PDF
基于改进三体训练法的半监督专利文本分类方法 被引量:10
2
作者 胡云青 邱清盈 +1 位作者 余秀 武建伟 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2020年第2期331-339,共9页
针对信息增益算法只能考察特征对整个系统的贡献、忽略特征对单个类别的信息贡献的问题,提出改进信息增益算法,通过引入权重系数调整对分类有重要价值的特征的信息增益值,以更好地考虑一个词在类别间的分布不均匀性.针对传统专利自动分... 针对信息增益算法只能考察特征对整个系统的贡献、忽略特征对单个类别的信息贡献的问题,提出改进信息增益算法,通过引入权重系数调整对分类有重要价值的特征的信息增益值,以更好地考虑一个词在类别间的分布不均匀性.针对传统专利自动分类中训练集标注瓶颈问题,提出基于改进三体训练算法的半监督分类方法,通过追踪每次更新后的训练集样本类别分布来动态改变3个分类器对同一未标记样本类别的预测概率阈值,从而在降低噪音数据影响的同时实现对未标记训练样本的充分利用.实验结果表明,本研究所提出的分类方法在有标记训练样本较少的情况下,可以取得较好的自动分类效果,并且适当增大未标记样本数据可以增强分类器的泛化能力. 展开更多
关键词 专利文本分类 特征选择 信息增益 半监督 三体训练算法
下载PDF
一种增强差异性的半监督协同分类算法 被引量:9
3
作者 于重重 商利利 +3 位作者 谭励 涂序彦 杨扬 王竞燕 《电子学报》 EI CAS CSCD 北大核心 2013年第1期35-41,共7页
半监督学习中的Tr-i Training算法打破了以往算法对充分冗余视图的限制,并通过利用三个分类器处理标记置信度和样本预测问题提高了标记效率.为进一步增强协同训练过程中分类器之间的差异性以提高性能,本文在其理论基础上提出了一种增强... 半监督学习中的Tr-i Training算法打破了以往算法对充分冗余视图的限制,并通过利用三个分类器处理标记置信度和样本预测问题提高了标记效率.为进一步增强协同训练过程中分类器之间的差异性以提高性能,本文在其理论基础上提出了一种增强差异性的半监督协同分类算法.该算法利用三个不同的分类器进行学习;考虑到分类模型在更新过程中,可能会因随机抽样导致性能恶化,该算法利用基于标记类别的分层抽样法来对已标记样本集进行抽样,并通过基于分类正确率的加权投票法实现了分类器的集成,提高了预测准确率.本文通过实验对所提出算法与Tr-i Training算法做了性能比较,实验结果表明本文所提出的方法在分类问题上具有较好的性能,验证了该算法的有效性和可行性. 展开更多
关键词 半监督协同分类算法 Tr-itraining算法 增强差异性策略 分层抽样法
下载PDF
基于交叉熵的安全Tri-training算法 被引量:7
4
作者 张永 陈蓉蓉 张晶 《计算机研究与发展》 EI CSCD 北大核心 2021年第1期60-69,共10页
半监督学习方法通过少量标记数据和大量未标记数据来提升学习性能.Tri-training是一种经典的基于分歧的半监督学习方法,但在学习过程中可能产生标记噪声问题.为了减少Tri-training中的标记噪声对未标记数据的预测偏差,学习到更好的半监... 半监督学习方法通过少量标记数据和大量未标记数据来提升学习性能.Tri-training是一种经典的基于分歧的半监督学习方法,但在学习过程中可能产生标记噪声问题.为了减少Tri-training中的标记噪声对未标记数据的预测偏差,学习到更好的半监督分类模型,用交叉熵代替错误率以更好地反映模型预估结果和真实分布之间的差距,并结合凸优化方法来达到降低标记噪声的目的,保证模型效果.在此基础上,分别提出了一种基于交叉熵的Tri-training算法、一个安全的Tri-training算法,以及一种基于交叉熵的安全Tri-training算法.在UCI(University of California Irvine)机器学习库等基准数据集上验证了所提方法的有效性,并利用显著性检验从统计学的角度进一步验证了方法的性能.实验结果表明,提出的半监督学习方法在分类性能方面优于传统的Tri-training算法,其中基于交叉熵的安全Tri-training算法拥有更高的分类性能和泛化能力. 展开更多
关键词 半监督学习 tri-training算法 交叉熵 凸优化 样本标记
下载PDF
基于Tri-DE-ELM的半监督模式分类方法研究 被引量:7
5
作者 吴明胜 邓晓刚 《计算机工程与应用》 CSCD 北大核心 2018年第3期109-114,共6页
针对极限学习机(ELM)未充分利用未标注样本、训练精度受网络权值初值影响的问题,提出一种基于协同训练与差分进化的改进ELM算法(Tri-DE-ELM)。考虑到传统的ELM模式分类技术只利用了少量标注样本而忽视大量未标注样本的问题,首先应用基于... 针对极限学习机(ELM)未充分利用未标注样本、训练精度受网络权值初值影响的问题,提出一种基于协同训练与差分进化的改进ELM算法(Tri-DE-ELM)。考虑到传统的ELM模式分类技术只利用了少量标注样本而忽视大量未标注样本的问题,首先应用基于Tri-Training算法的协同训练机制构建Tri-ELM半监督分类算法,利用少量的标记样本训练三个基分类器实现对未标记样本的标注。进一步针对基分类器训练中ELM网络输入层权值随机初始化影响分类效果的问题,采用差分进化(DE)算法对网络初值进行优化,优化目标及过程同时包括网络权值和分类误差两方面的因素,以避免网络的过拟合现象。在标准数据集上的实验结果表明,Tri-DE-ELM算法能有效地利用未标注数据,具有比传统ELM更高的分类精度。 展开更多
关键词 极限学习机 差分进化 tri-training算法 半监督学习
下载PDF
结合Tri-training半监督学习和凸壳向量的SVM主动学习算法 被引量:6
6
作者 徐海龙 龙光正 +2 位作者 别晓峰 吴天爱 郭蓬松 《模式识别与人工智能》 EI CSCD 北大核心 2016年第1期39-46,共8页
为解决监督学习过程中难以获得大量带有类标记样本且样本数据标记代价较高的问题,结合主动学习和半监督学习方法,提出基于Tri-training半监督学习和凸壳向量的SVM主动学习算法.通过计算样本集的壳向量,选择最有可能成为支持向量的壳向... 为解决监督学习过程中难以获得大量带有类标记样本且样本数据标记代价较高的问题,结合主动学习和半监督学习方法,提出基于Tri-training半监督学习和凸壳向量的SVM主动学习算法.通过计算样本集的壳向量,选择最有可能成为支持向量的壳向量进行标记.为解决以往主动学习算法在选择最富有信息量的样本标记后,不再进一步利用未标记样本的问题,将Tri-training半监督学习方法引入SVM主动学习过程,选择类标记置信度高的未标记样本加入训练样本集,利用未标记样本集中有利于学习器的信息.在UCI数据集上的实验表明,文中算法在标记样本较少时获得分类准确率较高和泛化性能较好的SVM分类器,降低SVM训练学习的样本标记代价. 展开更多
关键词 主动学习 半监督学习 支持向量机(SVM) 凸壳向量 tritraining算法
下载PDF
基于Tri-training的主动学习算法 被引量:3
7
作者 张雁 吴保国 +1 位作者 吕丹桔 林英 《计算机工程》 CAS CSCD 2014年第6期215-218,229,共5页
半监督学习和主动学习都是利用未标记数据,在少量标记数据代价下同时提高监督学习识别性能的有效方法。为此,结合主动学习方法与半监督学习的Tri-training算法,提出一种新的分类算法,通过熵优先采样算法选择主动学习的样本。针对UCI数... 半监督学习和主动学习都是利用未标记数据,在少量标记数据代价下同时提高监督学习识别性能的有效方法。为此,结合主动学习方法与半监督学习的Tri-training算法,提出一种新的分类算法,通过熵优先采样算法选择主动学习的样本。针对UCI数据集和遥感数据,在不同标记训练样本比例下进行实验,结果表明,该算法在标记样本数较少的情况下能取得较好的效果。将主动学习与Tri-training算法相结合,是提高分类性能和泛化性的有效途径。 展开更多
关键词 半监督学习 主动学习 tritraining算法 熵优先采样 tri-EPS算法
下载PDF
Tri-training算法中分类器组合的改进 被引量:4
8
作者 李心磊 杨思春 彭月娥 《苏州科技学院学报(自然科学版)》 CAS 2014年第2期52-56,共5页
Tri-training算法是半监督协同算法里的经典算法,该文针对算法中分类器的使用做了一些改进,由原先单一的分类器换成两个不同分类器的组合。使用SVM分类器和最大熵分类器的不同组合作为Tri-training算法里的三个分类器构成分类器模型,然... Tri-training算法是半监督协同算法里的经典算法,该文针对算法中分类器的使用做了一些改进,由原先单一的分类器换成两个不同分类器的组合。使用SVM分类器和最大熵分类器的不同组合作为Tri-training算法里的三个分类器构成分类器模型,然后分别对稀疏型数据、密集型数据与原始Tri-training算法进行实验比较,从而验证改进的有效性。 展开更多
关键词 半监督学习 最大熵 tri-training算法
下载PDF
基于Tri-training算法的多分类信用评级方法 被引量:2
9
作者 曹欣妍 周杰 《四川大学学报(自然科学版)》 CAS CSCD 北大核心 2023年第2期13-18,共6页
随着经济的快速发展,信用贷款在企业资金周转中的作用越来越重要.信用评级是信用贷款发放的基本依据之一.本文针对实际信用评级中有标签样本数量不足的问题,提出一种基于Tri-training算法的多分类信用评级方法,该方法选择支持向量机、... 随着经济的快速发展,信用贷款在企业资金周转中的作用越来越重要.信用评级是信用贷款发放的基本依据之一.本文针对实际信用评级中有标签样本数量不足的问题,提出一种基于Tri-training算法的多分类信用评级方法,该方法选择支持向量机、决策树和最大熵模型作为基分类器组合.最后,本文使用真实的信用数据集验证了该方法的实际效果. 展开更多
关键词 多分类信用评级 半监督学习 tri-training
下载PDF
基于Tri-training算法的构造性学习方法 被引量:3
10
作者 吴涛 李萍 王允强 《计算机工程》 CAS CSCD 2012年第6期13-15,共3页
构造性机器学习(CML)算法在训练分类器时需要大量有标记样本,而获取这些有标记样本十分困难。为此,提出一种基于Tri-training算法的构造性学习方法。根据已标记的样本,采用不同策略构造3个差异较大的初始覆盖分类网络,用于对未标记数据... 构造性机器学习(CML)算法在训练分类器时需要大量有标记样本,而获取这些有标记样本十分困难。为此,提出一种基于Tri-training算法的构造性学习方法。根据已标记的样本,采用不同策略构造3个差异较大的初始覆盖分类网络,用于对未标记数据进行标记,再将已标记数据加入到训练样本中,调整各分类网络参数,反复进行上述过程,直至获得稳定的分类器。实验结果证明,与CML算法和基于NB分类器的半监督学习算法相比,该方法的分类准确率更高。 展开更多
关键词 半监督学习 构造性机器学习 tri-training算法 覆盖 分类网络
下载PDF
协同半监督的构造性学习方法 被引量:1
11
作者 李萍 吴涛 《计算机工程与应用》 CSCD 北大核心 2015年第3期129-132,207,共5页
利用构造性学习(CML)算法训练分类器需要大量已标记样本,然而获取大量已标记的样本较为困难。为此,提出了一种协同半监督的构造性学习算法。将已标记样本等分为三个训练集,分别使用构造性学习算法训练三个单分类器,以共同投票的方式对... 利用构造性学习(CML)算法训练分类器需要大量已标记样本,然而获取大量已标记的样本较为困难。为此,提出了一种协同半监督的构造性学习算法。将已标记样本等分为三个训练集,分别使用构造性学习算法训练三个单分类器,以共同投票的方式对未标记样本进行标记,从而依次扩充三个单分类器训练集直到不能再扩充为止。将三个训练集合并训练出最终的分类器。选取UCI数据集进行实验,结果表明,与CML算法、Tri-CML算法、NB算法及Tri-NB相比,该方法的分类更为有效。 展开更多
关键词 半监督学习 构造性机器学习 co-training算法 tri-training算法 覆盖算法
下载PDF
结合边缘采样与差分进化的高光谱图像半监督协同分类框架 被引量:2
12
作者 王立国 刘佳俊 《黑龙江大学自然科学学报》 CAS 2020年第1期92-98,共7页
高光谱遥感是对地面观测的一种重要手段,高光谱图像分类技术是高光谱遥感领域内的核心内容。针对在扩充训练样本集的过程中,未能充分结合无标签样本与有标签样本,以及在训练过程中,各个分类器未能很好地进行决策融合等问题,在协同训练Tr... 高光谱遥感是对地面观测的一种重要手段,高光谱图像分类技术是高光谱遥感领域内的核心内容。针对在扩充训练样本集的过程中,未能充分结合无标签样本与有标签样本,以及在训练过程中,各个分类器未能很好地进行决策融合等问题,在协同训练Tri-training算法的基础上,提出了一种结合主动学习和群智能算法的半监督分类框架。该分类框架以Tri-training作为半监督分类算法,通过多准则多标准边缘采样(Multi-criteria multi-edge sampling,MCMS)主动学习算法和自适应差分进化算法(Self-adaptive differential evolution,SADE)选择信息量最丰富的无标签样本,并将经过两次寻优的样本标记加入训练样本集中辅助初始化分类器。实验结果表明,该分类框架有效地克服了有标签样本少的问题,充分利用无标签样本提高了分类精度。 展开更多
关键词 关半监督分类 主动学习 自适应差分进化 tri-training算法
下载PDF
基于机器学习技术的光网络资源动态分配研究 被引量:2
13
作者 彭雪梅 黄建军 《激光杂志》 CAS 北大核心 2022年第7期144-148,共5页
合理分配资源,可有效控制光网络的拥塞现象,确保服务质量机制正常运转,提升用户体验。为此,对基于机器学习技术的光网络资源动态分配方法进行研究。通过融合改进的半监督机器学习方法Tri-Training算法与深度包检测技术构建光网络资源分... 合理分配资源,可有效控制光网络的拥塞现象,确保服务质量机制正常运转,提升用户体验。为此,对基于机器学习技术的光网络资源动态分配方法进行研究。通过融合改进的半监督机器学习方法Tri-Training算法与深度包检测技术构建光网络资源分类器,获取光网络流量所属的服务质量要求类别,实现资源类型分类,提升资源分配的合理性;依据资源分类结果,利用基于循环神经网络的光网络资源动态分配算法中的执行者部分优化分配方案,通过输入、动作与效用函数三部分获取混合策略纳什均衡,依据纳什均衡动态分配分类后的光网络资源。实验证明:该方法能够有效进行光网络资源的动态分配,降低业务阻塞率与延时情况的发生率。 展开更多
关键词 机器学习 光网络 资源 动态分配 tri-training算法 循环神经网络
下载PDF
基于Tri-training-SSAE半监督学习算法的电力系统暂态稳定评估 被引量:2
14
作者 卫志农 李超凡 +4 位作者 丁爱飞 孙国强 黄蔓云 臧海祥 方熙程 《电力自动化设备》 EI CSCD 北大核心 2023年第7期110-116,共7页
基于机器学习的暂态稳定评估方法主要采用监督学习方法,为了解决监督学习方法所需的有标签样本难以获取的问题,提出基于三体训练-稀疏堆叠自动编码器(Tri-training-SSAE)半监督学习算法的电力系统暂态稳定评估方法。构建基于堆叠稀疏自... 基于机器学习的暂态稳定评估方法主要采用监督学习方法,为了解决监督学习方法所需的有标签样本难以获取的问题,提出基于三体训练-稀疏堆叠自动编码器(Tri-training-SSAE)半监督学习算法的电力系统暂态稳定评估方法。构建基于堆叠稀疏自动编码器的暂态稳定评估模型;在传统的三体训练过程中加入伪标签样本置信度判断,以减小噪声数据对模型训练的影响;以堆叠稀疏自动编码器为基分类器构建三体训练-稀疏堆叠自动编码器模型,利用大量的无标签样本提高模型的泛化能力。通过IEEE 39节点系统与华东某省级电网进行分析验证,结果表明,所提方法在有标签样本数较少时具有更高的评估准确度。 展开更多
关键词 暂态稳定评估 机器学习 半监督学习 三体训练算法 堆叠稀疏自动编码器
下载PDF
一种自适应的Tri-Training半监督算法 被引量:1
15
作者 彭雅琴 宫宁生 《计算机系统应用》 2016年第8期130-134,共5页
Tri-Training算法是半监督算法的一种,在学习过程中容易错误标注无标记样本,从而降低分类性能,为此提出一种ADP-Tri-Training(Adaptive Tri-Training)算法,改进协同工作方式,根据几何中心设置分类器组成,然后应用模糊数学理论将多个独... Tri-Training算法是半监督算法的一种,在学习过程中容易错误标注无标记样本,从而降低分类性能,为此提出一种ADP-Tri-Training(Adaptive Tri-Training)算法,改进协同工作方式,根据几何中心设置分类器组成,然后应用模糊数学理论将多个独立的分类器组合,使得算法可以在多因素下综合评价样本,并在此基础上引入遗传算法动态设置组合权重以适应于具体的样本集,从而尽可能降低样本标注的错误率,多个实验结果表明ADP-Tri-Training算法具有更好的分类性能. 展开更多
关键词 tri-training算法 自适应 遗传算法 差异性度量 半监督
下载PDF
融合光谱度量标记迁移和Tri-training的高光谱遥感图像半监督分类算法
16
作者 曹峰 李文涛 +4 位作者 骆剑承 李德玉 钱宇华 白鹤翔 张超 《大数据》 2023年第6期72-89,共18页
针对海量的高光谱遥感图像光谱和丰富的空间信息中可用于分类的有标记样本远少于无标记样本的数据特性,提出了一种融合光谱度量标记迁移和Tri-training的高光谱遥感图像半监督光谱-空间分类算法。该算法提出了一种基于光谱度量的标记迁... 针对海量的高光谱遥感图像光谱和丰富的空间信息中可用于分类的有标记样本远少于无标记样本的数据特性,提出了一种融合光谱度量标记迁移和Tri-training的高光谱遥感图像半监督光谱-空间分类算法。该算法提出了一种基于光谱度量的标记迁移方法,通过结合迁移标记和Tri-training预测标记进行扩充样本标记预测,提高了扩充样本标记的准确性。同时,该算法基于空间相关性选择扩充样本,综合运用光谱和空间特征提升图像分类的精度。在两个公开的高光谱遥感图像数据集上进行了实验,结果表明该算法优于基于Tri-training算法的高光谱遥感图像的分类性能。 展开更多
关键词 高光谱图像分类 半监督分类 纹理特征 光谱度量 tri-training算法
下载PDF
基于改进Tri-training算法的中文问句分类 被引量:1
17
作者 王雷 杨思春 《安徽工业大学学报(自然科学版)》 CAS 2016年第2期172-176,共5页
原始Tri-training算法对有标记的数据集通过随机采样方法,形成3个训练集去训练3个分类器。但是由这种随机采样形成的训练集中,可能出现有标记数据集中的不同类别数据数量相差较大,从而导致训练集中样本类别不平衡问题,影响分类器的分类... 原始Tri-training算法对有标记的数据集通过随机采样方法,形成3个训练集去训练3个分类器。但是由这种随机采样形成的训练集中,可能出现有标记数据集中的不同类别数据数量相差较大,从而导致训练集中样本类别不平衡问题,影响分类器的分类正确率。本文通过分类采样对Tri-training算法的随机采样方法进行改进,根据该改进的Tri-training算法,建立分类模型,并利用其对哈工大中文问句集和本文扩展问句集进行分类实验。结果表明,本文算法有良好的适应性,且分类正确率明显提高;适当增大训练集和未标记样本数据可以增强分类器的泛化能力,从而使分类正确率提高。 展开更多
关键词 tri-training算法 随机采样 问句分类
下载PDF
基于改进Tri-training算法投票机制的中文问句分类
18
作者 王雷 孙中全 《长春师范大学学报》 2023年第12期60-65,101,共7页
原始的Tri-training算法在三个分类器给出的分类结果均不同时,默认第一个分类器给出的分类结果为分类器模型的最终结果,这在一定程度上有可能会降低分类器在这种情况下的分类精度。本文提出一种基于平时优秀思想的投票机制算法,该算法... 原始的Tri-training算法在三个分类器给出的分类结果均不同时,默认第一个分类器给出的分类结果为分类器模型的最终结果,这在一定程度上有可能会降低分类器在这种情况下的分类精度。本文提出一种基于平时优秀思想的投票机制算法,该算法避免了默认将第一个分类器给出的结果作为分类器模型的分类结果这种片面的情况,并利用其对哈工大中文问句集和本文扩展问句集进行分类实验。结果表明,本文算法有良好的适应性,且分类正确率明显提高;适当增大训练集和未标记样本数据,可以增强分类器的泛化能力,从而使分类正确率提高。 展开更多
关键词 tri-training算法 投票机制 问句分类
下载PDF
基于直觉模糊集的Tri-Training改进算法
19
作者 彭雅琴 宫宁生 《微电子学与计算机》 CSCD 北大核心 2016年第3期134-137,141,共5页
Tri-Training算法是半监督算法中的一种,其初始分类器性能受有标记样本影响较大,当样本数目不足时,分类器性能相对较弱,会直接影响后续迭代.为此提出IFS-Tri-Training(Tri-Training based on intuitionistic fuzzy sets)算法,引入SOM算... Tri-Training算法是半监督算法中的一种,其初始分类器性能受有标记样本影响较大,当样本数目不足时,分类器性能相对较弱,会直接影响后续迭代.为此提出IFS-Tri-Training(Tri-Training based on intuitionistic fuzzy sets)算法,引入SOM算法构建直觉模糊集,使得分类器在多因素下综合判别无标记样本,提高无标记样本的使用率,从而在迭代中扩展有标记样本集.在多个UCI数据上进行实验,结果数据表明,分类器的性能得到提高,学习无标记样本过程是影响分类器的关键点. 展开更多
关键词 tritraining算法 SOM算法 直觉模糊集 半监督
下载PDF
基于Tri-training直推式支持向量机算法
20
作者 杜红乐 张燕 《河南科学》 2017年第7期1032-1036,共5页
针对直推式支持向量机错误累积及获取无标记样本空间信息慢的问题,结合Tri-training算法、KKT条件及富信息策略提出一种基于Tri-training的直推式支持向量机算法,用KKT条件选择标注样本,用富信息策略选择加入的分类器,利用多个分类器的... 针对直推式支持向量机错误累积及获取无标记样本空间信息慢的问题,结合Tri-training算法、KKT条件及富信息策略提出一种基于Tri-training的直推式支持向量机算法,用KKT条件选择标注样本,用富信息策略选择加入的分类器,利用多个分类器的投票结果进行标注,提高样本标注的准确度,利用多个分类器进行协同训练提高算法的训练速度.最后实验结果表明,算法能够提高最终分类器的分类精度和算法的训练速度. 展开更多
关键词 支持向量机 直推式学习 半监督学习 tri-training算法
下载PDF
上一页 1 2 下一页 到第
使用帮助 返回顶部