针对航空发动机高空环境模拟过渡态试验对高空舱进气环境压力模拟系统提出的强抗扰性、强鲁棒性等控制综合品质要求,设计了一种基于鲁棒模型预测控制(Robust Model Predictive Control,RMPC)的高空舱进气环境压力控制方法。RMPC采用滚...针对航空发动机高空环境模拟过渡态试验对高空舱进气环境压力模拟系统提出的强抗扰性、强鲁棒性等控制综合品质要求,设计了一种基于鲁棒模型预测控制(Robust Model Predictive Control,RMPC)的高空舱进气环境压力控制方法。RMPC采用滚动时域优化和扰动反馈补偿的方法,在预测控制框架内处理模型的不确定性。通过建立进气环境压力模拟系统设备特性模型,设计了基于RMPC的进气环境压力控制策略,搭建了仿真平台,与线性自抗扰控制(Linear Active Disturbance Rejection Control,LADRC)方法进行了对比分析。仿真结果表明,应用RMPC技术后,动态调节时间由7.68 s缩短至3.91 s,最大瞬时波动量由0.94%减小至0.25%,该技术能够大幅提高发动机高空环境模拟过渡态试验中进气环境压力模拟的动态响应速度、控制精度和抗扰能力。展开更多
This paper presents a multi thread dialog model using extended state transition network model combined with an object oriented event model to specify and manage user interface. The model provides multi thread dialo...This paper presents a multi thread dialog model using extended state transition network model combined with an object oriented event model to specify and manage user interface. The model provides multi thread dialogs and the concurrent executing of user interface and application procedures. The forms of class based concurrency possible in the model emphasize the human computer interaction and exploit the concurrency across objects and within an object. Dialog descriptions using extended state transition networks, the automatic extraction of concurrency, the facilities for performing synchronization and communicating, generalization and specification, and the smooth transition from dialog design to programming language implementation are also given in this paper.展开更多
The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we develope...The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we developed a spin-state and delocalized electron regulation method to optimize oxygen evolution reaction(OER)performance by in-situ growth of NiCo_(2)(OH)_(x) using Oswald ripening and coordinating etching process on MXene and plasma treatment.X-ray absorption spectroscopy,magnetic tests and electron paramagnetic resonance reveal that the coupling of NiCo_(2)(OH)_(x) and MXene can induce remarkable spin-state transition of Co^(3+)and transition metal ions electron delocalization,plasma treatment further optimizes the 3 d orbital structure and delocalized electron density.The unique Jahn-Teller phenomenon can be brought by the intermediate spin state(t2 _(g)^(5) e_(g)^(1))of Co^(3+),which benefits from the partial electron occupied egorbitals.This distinct electron configuration(t2_(g)^(5) e_(g)^(1))with unpaired electrons leads to orbital degeneracy,that the adsorption free energy of intermediate species and conductivity were further optimized.The optimized electrocatalyst exhibits excellent OER activity with an overpotential of 268 m V at 10 m A cm^(-2).DFT calculations show that plasma treatment can effectively regulate the d-band center of TMs to optimize the adsorption and improve the OER activity.This approach could guide the rational design and discovery of electrocatalysts with ideal electron configurations in the future.展开更多
文摘针对航空发动机高空环境模拟过渡态试验对高空舱进气环境压力模拟系统提出的强抗扰性、强鲁棒性等控制综合品质要求,设计了一种基于鲁棒模型预测控制(Robust Model Predictive Control,RMPC)的高空舱进气环境压力控制方法。RMPC采用滚动时域优化和扰动反馈补偿的方法,在预测控制框架内处理模型的不确定性。通过建立进气环境压力模拟系统设备特性模型,设计了基于RMPC的进气环境压力控制策略,搭建了仿真平台,与线性自抗扰控制(Linear Active Disturbance Rejection Control,LADRC)方法进行了对比分析。仿真结果表明,应用RMPC技术后,动态调节时间由7.68 s缩短至3.91 s,最大瞬时波动量由0.94%减小至0.25%,该技术能够大幅提高发动机高空环境模拟过渡态试验中进气环境压力模拟的动态响应速度、控制精度和抗扰能力。
文摘This paper presents a multi thread dialog model using extended state transition network model combined with an object oriented event model to specify and manage user interface. The model provides multi thread dialogs and the concurrent executing of user interface and application procedures. The forms of class based concurrency possible in the model emphasize the human computer interaction and exploit the concurrency across objects and within an object. Dialog descriptions using extended state transition networks, the automatic extraction of concurrency, the facilities for performing synchronization and communicating, generalization and specification, and the smooth transition from dialog design to programming language implementation are also given in this paper.
基金supported by the National Natural Science Foundation of China(21801090,21831003 and 21621001)the Jilin Scientific and Technological Development Program(20200802003GH)+2 种基金the Scientific Research Project in the Education Department of Jilin Province(JJKH20211044KJ)the Project on Experimental Technique of Jilin University(409020720202)supported by Users with the Excellence Program of Hefei Science Center CAS(2020HSC-UE002)。
文摘The electrocatalytic activity of transition-metal-based compounds is closely related to the electronic configuration.However,optimizing the surface electron spin state of catalysts remains a challenge.Here,we developed a spin-state and delocalized electron regulation method to optimize oxygen evolution reaction(OER)performance by in-situ growth of NiCo_(2)(OH)_(x) using Oswald ripening and coordinating etching process on MXene and plasma treatment.X-ray absorption spectroscopy,magnetic tests and electron paramagnetic resonance reveal that the coupling of NiCo_(2)(OH)_(x) and MXene can induce remarkable spin-state transition of Co^(3+)and transition metal ions electron delocalization,plasma treatment further optimizes the 3 d orbital structure and delocalized electron density.The unique Jahn-Teller phenomenon can be brought by the intermediate spin state(t2 _(g)^(5) e_(g)^(1))of Co^(3+),which benefits from the partial electron occupied egorbitals.This distinct electron configuration(t2_(g)^(5) e_(g)^(1))with unpaired electrons leads to orbital degeneracy,that the adsorption free energy of intermediate species and conductivity were further optimized.The optimized electrocatalyst exhibits excellent OER activity with an overpotential of 268 m V at 10 m A cm^(-2).DFT calculations show that plasma treatment can effectively regulate the d-band center of TMs to optimize the adsorption and improve the OER activity.This approach could guide the rational design and discovery of electrocatalysts with ideal electron configurations in the future.