Transition on a flared cone with zero angle of at- tack was studied in our newly established Mach 6 quiet wind tunnel (M6QT) via wall pressure measurement and flow visualization. High-frequency pressure transducers ...Transition on a flared cone with zero angle of at- tack was studied in our newly established Mach 6 quiet wind tunnel (M6QT) via wall pressure measurement and flow visualization. High-frequency pressure transducers were used to measure the second-mode waves' amplitudes and frequencies. Using pulsed schlieren diagnostic and Rayleigh scattering technique, we got a clear evolution of the second-mode disturbances. The second-mode waves exist for a long distance, which means that the second-mode waves grow linearly in a large region. Strong Mach waves are radiated from the edge of the boundary layer. With further development, the second-mode waves reach their maximum magnitude and harmonics of the second-mode instability appear. Then the disturbances grow nonlinearly. The second modes become weak and merge with each other. Finally, the nonlinear interaction of disturbance leads to a relatively quiet zone, which further breaks down, resulting in the transition of the bound- ary layer. Our results show that transition is determined by the second mode. The quiet zone before the final breakdown is observed in flow visualization for the first time. Eventual transition requires the presence of a quiet zone generated by nonlinear interactions.展开更多
In this paper.Active Disturbance Rejection Control(ADRC)is utilized in the pitch control of a vertical take-off and landing fixed-wing Unmanned Aerial Vehicle(UAV)to address the problem of height fluctuation during th...In this paper.Active Disturbance Rejection Control(ADRC)is utilized in the pitch control of a vertical take-off and landing fixed-wing Unmanned Aerial Vehicle(UAV)to address the problem of height fluctuation during the transition from hover to level flight.Considering the difficulty of parameter tuning of ADRC as well as the requirement of accuracy and rapidity of the controller,a Multi-Strategy Pigeon-Inspired Optimization(MSPIO)algorithm is employed.Particle Swarm Optimization(PSO),Genetic Algorithm(GA),the basic Pigeon-Inspired Optimization(PIO),and an improved PIO algorithm CMPIO are compared.In addition,the optimized ADRC control system is compared with the pure Proportional-Integral-Derivative(PID)control system and the non-optimized ADRC control system.The effectiveness of the designed control strategy for forward transition is verified and the faster convergence speed and better exploitation ability of the proposed MSPIO algorithm are confirmed by simulation results.展开更多
At the end of the open-pit mining process in large metal mines, the mining model must change from open-pit mining to underground mining, but the mutual interference between the two mining models leads to poor producti...At the end of the open-pit mining process in large metal mines, the mining model must change from open-pit mining to underground mining, but the mutual interference between the two mining models leads to poor production safety conditions and difficulties in production convergence during the transition period. To solve these technical problems of poor production safety conditions and difficulties in production convergence during the transition period, in this study, based on the case of the Dagu Mountain Mine, a new transition mode of wedge switching for collaborative mining is proposed and established, which is suitable for collaborative mining. This new mining process completely eliminates the boundary pillar and the artificial covering layer, combining the technology of the mining-induced caving method and the technology of deep mining at the bottom of the open-pit. The results show that 1) the optimization of the open-pit boundary reduces the amount of rock stripping, and 2) it achieves a stable transition of collaborative mining capacity. The study shows that the proposed method uses the technologies of the mining-induced caving method in underground mining and deep mining at the bottom of the open pit in open-pit mining, and the method then optimizes the open-pit mining in detail by comparing the advantages of open-pit mining and underground mining. This study provides true and accurate technical support for the transition from open-pit mining to underground mining.展开更多
文摘Transition on a flared cone with zero angle of at- tack was studied in our newly established Mach 6 quiet wind tunnel (M6QT) via wall pressure measurement and flow visualization. High-frequency pressure transducers were used to measure the second-mode waves' amplitudes and frequencies. Using pulsed schlieren diagnostic and Rayleigh scattering technique, we got a clear evolution of the second-mode disturbances. The second-mode waves exist for a long distance, which means that the second-mode waves grow linearly in a large region. Strong Mach waves are radiated from the edge of the boundary layer. With further development, the second-mode waves reach their maximum magnitude and harmonics of the second-mode instability appear. Then the disturbances grow nonlinearly. The second modes become weak and merge with each other. Finally, the nonlinear interaction of disturbance leads to a relatively quiet zone, which further breaks down, resulting in the transition of the bound- ary layer. Our results show that transition is determined by the second mode. The quiet zone before the final breakdown is observed in flow visualization for the first time. Eventual transition requires the presence of a quiet zone generated by nonlinear interactions.
基金supported by Science and Technology Innovation 2030-Key Project of"New Generation Artificial Intelli-gence",China(No.2018AAA0100803)National Natural Science Foundation of China(Nos.U20B2071,91948204,U1913602)Aeronautical Foundation of China(No.20185851022).
文摘In this paper.Active Disturbance Rejection Control(ADRC)is utilized in the pitch control of a vertical take-off and landing fixed-wing Unmanned Aerial Vehicle(UAV)to address the problem of height fluctuation during the transition from hover to level flight.Considering the difficulty of parameter tuning of ADRC as well as the requirement of accuracy and rapidity of the controller,a Multi-Strategy Pigeon-Inspired Optimization(MSPIO)algorithm is employed.Particle Swarm Optimization(PSO),Genetic Algorithm(GA),the basic Pigeon-Inspired Optimization(PIO),and an improved PIO algorithm CMPIO are compared.In addition,the optimized ADRC control system is compared with the pure Proportional-Integral-Derivative(PID)control system and the non-optimized ADRC control system.The effectiveness of the designed control strategy for forward transition is verified and the faster convergence speed and better exploitation ability of the proposed MSPIO algorithm are confirmed by simulation results.
基金Projects(41371437,61473072,61203214)supported by the National Natural Science Foundation of ChinaProjet(N160404008)supported by the Fundamental Research Funds for the Central Universities,China
文摘At the end of the open-pit mining process in large metal mines, the mining model must change from open-pit mining to underground mining, but the mutual interference between the two mining models leads to poor production safety conditions and difficulties in production convergence during the transition period. To solve these technical problems of poor production safety conditions and difficulties in production convergence during the transition period, in this study, based on the case of the Dagu Mountain Mine, a new transition mode of wedge switching for collaborative mining is proposed and established, which is suitable for collaborative mining. This new mining process completely eliminates the boundary pillar and the artificial covering layer, combining the technology of the mining-induced caving method and the technology of deep mining at the bottom of the open-pit. The results show that 1) the optimization of the open-pit boundary reduces the amount of rock stripping, and 2) it achieves a stable transition of collaborative mining capacity. The study shows that the proposed method uses the technologies of the mining-induced caving method in underground mining and deep mining at the bottom of the open pit in open-pit mining, and the method then optimizes the open-pit mining in detail by comparing the advantages of open-pit mining and underground mining. This study provides true and accurate technical support for the transition from open-pit mining to underground mining.