The Time-Domain-Integral-Equation (TDIE) method is proposed to analyze transient scattering interaction between a two-dimensional infinitely long conducting target with an arbitrary cross section and a one-dimensional...The Time-Domain-Integral-Equation (TDIE) method is proposed to analyze transient scattering interaction between a two-dimensional infinitely long conducting target with an arbitrary cross section and a one-dimensional rough surface. Based on the electric-field-integral-equation in time domain, the explicit and implicit solutions of MOT (Marching-on-time) are derived and presented. The current response at the center of the rough surface and the far electric field response with time in the composite model are calculated and analyzed. The numerical results are compared and verified with those obtained by conventional MOM-IDFT (Method of Moment-inverse discrete Fourier transform). Finally, the influence of the size, the location of the target and the incident angle on the current response and the far electric fields response are discussed in detail.展开更多
提出了一种将时域积分方程(time domain integral equation,TDIE)方法和时域有限差分(finite differnce time domain,FDTD)方法相结合计算分层有耗半空间上方导线瞬态电磁响应的新方法.其中,一维FDTD方法用于计算入射电磁波经分层半空...提出了一种将时域积分方程(time domain integral equation,TDIE)方法和时域有限差分(finite differnce time domain,FDTD)方法相结合计算分层有耗半空间上方导线瞬态电磁响应的新方法.其中,一维FDTD方法用于计算入射电磁波经分层半空间反射的时域波形.TDIE用于求解细导线在加入两个激励源(直接入射电磁波和经分层半空间反射的电磁波)时的瞬态响应.相关计算理论和数值模拟结果说明了本文方法是一种解决了分层有耗介质上方水平放置导线瞬态响应的高效解决方案.展开更多
A time domain electric al field integral equation (TDEFIE) is formulated for the problem of a thin wire antenna in the presence of conductor bodies, and this equation is solved by the me...A time domain electric al field integral equation (TDEFIE) is formulated for the problem of a thin wire antenna in the presence of conductor bodies, and this equation is solved by the method of time marching algorithm. The analysis is valid for any arbitrarily shaped, oriented and positioned wire antennas relative to arbitrarily shaped conductor bodies. Current at the excited point, input admittance and radiation pattern are given and agree with the results computed by the method in frequency domain.展开更多
We introduce a new transmit/receive dipole pair array to obtain a compact quasi\|monostatic antenna structure for ground penetrating radar systems. And we analyze this transmit/receive dipole ...We introduce a new transmit/receive dipole pair array to obtain a compact quasi\|monostatic antenna structure for ground penetrating radar systems. And we analyze this transmit/receive dipole pair array in time domain. The numerical results show that if the distance between the transmit antenna and receive antenna is appropriate the array configuration is adoptable.展开更多
It is important but difficult to analyze the electromagnetic environment effect(E3) in the designing of modern airborne,sea,space,and ground systems.Thus a hybrid algorithm of time domain integral equation,finite diff...It is important but difficult to analyze the electromagnetic environment effect(E3) in the designing of modern airborne,sea,space,and ground systems.Thus a hybrid algorithm of time domain integral equation,finite difference time domain and modified nodal analysis(TDIE-FDTD-MNA) is developed to analyze the E3 of complex systems with cables and nonlinear circuit structures.The plane wave time domain(PWTD) enhanced TDIE method is adopted to solve field problems.The higher order FDTD(2,4) is adopted to solve cable problems.The MNA is adopted to obtain the response of complex circuits(with nonlinear structures).Numerical examples demonstrate the effectiveness of the proposed algorithm.展开更多
基金Supported by the National Natural Science Foundation of China (Grant No. 60571058)the Specialized Research Fund for the Doctoral Program of Higher Education of China (Grant No. 20070701010)
文摘The Time-Domain-Integral-Equation (TDIE) method is proposed to analyze transient scattering interaction between a two-dimensional infinitely long conducting target with an arbitrary cross section and a one-dimensional rough surface. Based on the electric-field-integral-equation in time domain, the explicit and implicit solutions of MOT (Marching-on-time) are derived and presented. The current response at the center of the rough surface and the far electric field response with time in the composite model are calculated and analyzed. The numerical results are compared and verified with those obtained by conventional MOM-IDFT (Method of Moment-inverse discrete Fourier transform). Finally, the influence of the size, the location of the target and the incident angle on the current response and the far electric fields response are discussed in detail.
文摘提出了一种将时域积分方程(time domain integral equation,TDIE)方法和时域有限差分(finite differnce time domain,FDTD)方法相结合计算分层有耗半空间上方导线瞬态电磁响应的新方法.其中,一维FDTD方法用于计算入射电磁波经分层半空间反射的时域波形.TDIE用于求解细导线在加入两个激励源(直接入射电磁波和经分层半空间反射的电磁波)时的瞬态响应.相关计算理论和数值模拟结果说明了本文方法是一种解决了分层有耗介质上方水平放置导线瞬态响应的高效解决方案.
文摘A time domain electric al field integral equation (TDEFIE) is formulated for the problem of a thin wire antenna in the presence of conductor bodies, and this equation is solved by the method of time marching algorithm. The analysis is valid for any arbitrarily shaped, oriented and positioned wire antennas relative to arbitrarily shaped conductor bodies. Current at the excited point, input admittance and radiation pattern are given and agree with the results computed by the method in frequency domain.
文摘We introduce a new transmit/receive dipole pair array to obtain a compact quasi\|monostatic antenna structure for ground penetrating radar systems. And we analyze this transmit/receive dipole pair array in time domain. The numerical results show that if the distance between the transmit antenna and receive antenna is appropriate the array configuration is adoptable.
基金supported by National Basic Research Program of China(973 Program)
文摘It is important but difficult to analyze the electromagnetic environment effect(E3) in the designing of modern airborne,sea,space,and ground systems.Thus a hybrid algorithm of time domain integral equation,finite difference time domain and modified nodal analysis(TDIE-FDTD-MNA) is developed to analyze the E3 of complex systems with cables and nonlinear circuit structures.The plane wave time domain(PWTD) enhanced TDIE method is adopted to solve field problems.The higher order FDTD(2,4) is adopted to solve cable problems.The MNA is adopted to obtain the response of complex circuits(with nonlinear structures).Numerical examples demonstrate the effectiveness of the proposed algorithm.