摘要
该文首先利用参数坐标和广义Duffy 坐标变换将时域电场积分方程(TDEFIE)的奇异性积分转换成非奇异性积分,然后根据时间基函数的特点将该积分转换成可以快速精确计算的分区域积分。数值计算实例表明,该方法可以大幅度提高求解TDEFIE 的后时稳定性和解的精度,而不必采用任何求平均的过程。该方法适用于任意类型的时间基函数并可方便地推广到高阶曲面拟合和高阶空间基函数情形。
In this article, the transformations of the parametric coordinates (i.e. area coordinates) and general Duffycoordinates are employed to transform the singular integrals of the Time-Domain Electric Field Integral Equation (TDEFIE) into non-singular integrals, which can be accurately and efficiently evaluated by dividing the transformed domain of integration into sub-domains. Simulation results demonstrate that this approach seems to drastically improve stability and accuracy of the numerical results without resort to any averaging processes. The proposed method is suitable to any causal temporal basis functions and can be extended to curvilinear patch and high-order spatial basis functions in a straidatforward way.
出处
《电子与信息学报》
EI
CSCD
北大核心
2005年第11期1821-1824,共4页
Journal of Electronics & Information Technology
基金
国家自然科学基金(60371009)国家部级基金(51403010604DZ0233)
关键词
时域电磁散射
时域积分方程
时间步进算法
奇异性积分
Electromagnetic transient scattering, Time-domain integral equation, Marching On in Time (MOT) method, Singular integral