Thin films of capillary deposited nickel hexacyanoferrate(NiHCF) were investigated as electrochemically switched ion exchange(ESIX) materials. The films were generated on platinum and graphite substrates based on the ...Thin films of capillary deposited nickel hexacyanoferrate(NiHCF) were investigated as electrochemically switched ion exchange(ESIX) materials. The films were generated on platinum and graphite substrates based on the ternary reagent diagram. In 1 mol/L KNO3 solution, cyclic voltammetry(CV) combined with energy-dispersive X-ray spectroscopy(EDS) was used to determine the influence of experimental conditions on the electroactivity of the NiHCF thin film on Pt substrates. The ion selectivity, ion-exchange capacity and the regenerability of NiHCF films on Pt and graphite substrates were investigated. The experiment results show that the NiHCF thin films from Ni2+-poor growth conditions have double peaks CV curves and contain relatively larger amount of potassium; while those from Ni2+-rich growth conditions are single peak CV curves and contain relatively smaller amount of potassium. It is demonstrated that the NiHCF thin films of capillary chemical deposition have good ESIX performances.展开更多
基金Project(20006011) supported by the National Natural Science Foundation of China Project(20021017) supported by the Natural Science Foundation of Shanxi Province Project(2004-24) supported by the Scholar Council Foundation of Shanxi Province, China
文摘Thin films of capillary deposited nickel hexacyanoferrate(NiHCF) were investigated as electrochemically switched ion exchange(ESIX) materials. The films were generated on platinum and graphite substrates based on the ternary reagent diagram. In 1 mol/L KNO3 solution, cyclic voltammetry(CV) combined with energy-dispersive X-ray spectroscopy(EDS) was used to determine the influence of experimental conditions on the electroactivity of the NiHCF thin film on Pt substrates. The ion selectivity, ion-exchange capacity and the regenerability of NiHCF films on Pt and graphite substrates were investigated. The experiment results show that the NiHCF thin films from Ni2+-poor growth conditions have double peaks CV curves and contain relatively larger amount of potassium; while those from Ni2+-rich growth conditions are single peak CV curves and contain relatively smaller amount of potassium. It is demonstrated that the NiHCF thin films of capillary chemical deposition have good ESIX performances.