Low temperature stress during germination and early seedling growth is an important constraint of global production of maize. The effects of seed priming with 0.25%, 0.50%, and 0.75% (w/v) chitosan solutions at 15 ...Low temperature stress during germination and early seedling growth is an important constraint of global production of maize. The effects of seed priming with 0.25%, 0.50%, and 0.75% (w/v) chitosan solutions at 15 ℃ on the growth and physiological changes were investigated using two maize (Zea rnays L.) inbred lines, HuangC (chilling-tolerant) and Mo17 (chilling-sensitive). While seed priming with chitosan had no significant effect on germination percentage under low temperature stress, it enhanced germination index, reduced the mean germination time (MGT), and increased shoot height, root length, and shoot and root dry weights in both maize lines. The decline of malondialdehyde (MDA) content and relative permeability of the plasma membrane and the increase of the concentrations of soluble sugars and proline, peroxidase (POD) activity, and catalase (CAT) activity were detected both in the chilling-sensitive and chilling-tolerant maize seedlings after priming with the three concentrations of chitosan. HuangC was less sensitive to responding to different concentrations of chitosan. Priming with 0.50% chitosan for about 60-64 h seemed to have the best effects. Thus, it suggests that seed priming with chitosan may improve the speed of germination of maize seed and benefit for seedling growth under low temperature stress.展开更多
Apoptosis, especially the intrinsic mitochondrial cell death pathway, is regulated by the BCL-2 family of proteins. Defects in apoptotic machinery are one of the main mechanisms that cells employ to evade cell death a...Apoptosis, especially the intrinsic mitochondrial cell death pathway, is regulated by the BCL-2 family of proteins. Defects in apoptotic machinery are one of the main mechanisms that cells employ to evade cell death and become cancerous. Targeting the apoptotic defects, either by direct inhibition of BCL-2 family proteins or through modulation of regulatory pathways, can restore cell sensitivity to cell death. This review will focus on the aspects of BCL-2 family proteins, their interactions with kinase pathways, and how novel targeted agents can help overcome the apoptotic blockades. Furthermore, functional assays, such as BH3 profiling, may help in predicting responses to chemotherapies and aid in the selection of combination therapies by determining the mitochondrial threshold for initiating cell death.展开更多
Background Molecular testing is more precise compared to serology and has been widely used in genotyping blood group antigens. Single nucleotide polymorphisms (SNPs) of blood group antigens can be determined by the ...Background Molecular testing is more precise compared to serology and has been widely used in genotyping blood group antigens. Single nucleotide polymorphisms (SNPs) of blood group antigens can be determined by the polymerase chain reaction with sequence specific priming (PCR-SSP) assay. Commercial high-throughput platforms can be expensive and are not approved in China. The genotype frequencies of Kidd, Kell, Duffy, Scianna, and RhCE blood group antigens in Jiangsu province were unknown. The aim of this study is sought to detect the genotype frequencies of Kidd, Kell, Duffy, Scianna, and RhCE antigens in Jiangsu Chinese Hart using molecular methods with laboratory developed tests. Methods DNA was extracted from EDTA-anticoagulated blood samples of 146 voluntary blood donors collected randomly within one month. Standard serologic assay for red blood cell antigens were also performed except the Scianna blood group antigens. PCR-SSP was designed to work under one PCR program to identify the following SNPs: JK1/JK2, KEL 1/KEL2, FYA/FYB, SC1/SC2, C/c and E/e. Results Serologic antigen results were identical to the phenotypes that were predicted from genotyping results. The allele frequencies for Jk^*01 and Jk^*02 were 0.51 and 0.49, respectively; for Fy^*A and Fy^*B 0.94 and 0.06; for RHCE^*C and RHCE^*c 0.68 and 0.32; and for RHCE^*E and RHCE^*e 0.28 and 0.72. Among 146 blood donors, all were KEL^*02/ KEL^*02 and SC^*01/SC^*01, indicating allele frequencies for KEL^*02 and SC^*01 close to 1.00. Conclusions The use of PCR-SSP working under the same condition for testing multiple antigens at the same time is practical. This approach can be effective and cost-efficient for small-scale laboratories and in developing counties. These molecular tests can be also used for identifying rare blood types.展开更多
Aims Elevated atmospheric CO_(2)has the potential to enhance the net primary productivity of terrestrial ecosystems.However,the role of soil microorganisms on soil C cycling following this increased available C remain...Aims Elevated atmospheric CO_(2)has the potential to enhance the net primary productivity of terrestrial ecosystems.However,the role of soil microorganisms on soil C cycling following this increased available C remains ambiguous.This study was conducted to determine how quality and quantity of plant litter inputs would affect soil microorganisms and consequently C turnover.Methods Soil microbial biomass and community structure,bacterial community-level physiological profile,and CO_(2)emission caused by different substrate C decomposition were investigated using techniques of biological measurements,chemical and stable C isotope analysis,and BIOLOG-ECO microplates in a semiarid grassland ecosystem of northern China in 2006 and 2007 by mixing three contrasting types of plant materials,C_(3)shoot litter(SC_(3)),C_(3)root litter(RC_(3)),and C4 shoot litter(SC4),into the 10-to 20-cm soil layer at rates equivalent to 0(C0),60(C60),120(C120)and 240 g C m2(C240).Important Findings Litter addition significantly enriched soil microbial biomass C and N and resulted in changes in microbial structure.Principal component analysis of microbial structure clearly differentiated among zero addition,C_(3)-plant-derived litter,and C4-plant-derived litter and among shoot-and root-derived litter of C_(3)plants;soilmicroorganismsmainly utilized carbohydrates without litter addition,carboxylic acids with C_(3)-plant-derived litter addition and amino acidswith C4-plant-derived litter addition.We also detected stimulated decomposition of older substratewith C4-plant-derived litter inputs.Our results showthat both quality and quantity of belowground litter are involved in affecting soil microbial community structure in semiarid grassland ecosystem.展开更多
Low germination and vigor of rice seed associated with dry-seed broadcasting are common problems encountered by rice growers.The objectives of this study were to evaluate the role of potassium nitrate(KNO3)on the pa...Low germination and vigor of rice seed associated with dry-seed broadcasting are common problems encountered by rice growers.The objectives of this study were to evaluate the role of potassium nitrate(KNO3)on the pattern of seed imbibition and to determine the effect of seed priming with KNO3 on the germination percentage,speed and uniformity of germination in rice seed.Experiment 1 compared the patterns of seed imbibition of six concentrations of KNO3(0,0.25,0.50,1.00,1.50,and 2.00%)in two rice cultivars-KDML105 and RD15.The results showed that soaking rice seed in KNO3 at higher concentrations could delay the imbibition time.The higher concentrations of KNO3 delayed the imbibition time of rice seed and took a longer time to reach the end of phases 1 and 2 compared to the lower concentrations.The patterns of seed imbibition using distilled water of both rice cultivars(KDML105 and RD15)were quite similar,but with different concentrations of KNO3,the imbibition time taken to reach the end of phases 1 and 2 was slightly postponed in KDML105 suggesting that different rice cultivars may need different imbibition times for soaking seed in the priming process.Experiment 2 evaluated the effects of seed priming with 1.0 and 2.0%KNO3 at different imbibition times.It was found that priming with 1.0%KNO3 showed better seed germination than priming with 2.0%KNO3 and seed priming with 1.0%KNO3 at the imbibition time of early phase 2(or 28 h for KDML105)improved seed germination and increased both the speed and uniformity of seed germination.The results of this study show promise for the use of priming with 1.0%KNO3 soaked until early phase 2 of seed imbibition for improving the seed germination and vigor of rice in dry seed broadcasting.展开更多
基金Project supported by the Major Science and Technology Special Project (priority subject) of Zhejiang Province (No. 2008C12005-1)the Key Project of Education Department of Zhejiang Province (No. 20070147), China
文摘Low temperature stress during germination and early seedling growth is an important constraint of global production of maize. The effects of seed priming with 0.25%, 0.50%, and 0.75% (w/v) chitosan solutions at 15 ℃ on the growth and physiological changes were investigated using two maize (Zea rnays L.) inbred lines, HuangC (chilling-tolerant) and Mo17 (chilling-sensitive). While seed priming with chitosan had no significant effect on germination percentage under low temperature stress, it enhanced germination index, reduced the mean germination time (MGT), and increased shoot height, root length, and shoot and root dry weights in both maize lines. The decline of malondialdehyde (MDA) content and relative permeability of the plasma membrane and the increase of the concentrations of soluble sugars and proline, peroxidase (POD) activity, and catalase (CAT) activity were detected both in the chilling-sensitive and chilling-tolerant maize seedlings after priming with the three concentrations of chitosan. HuangC was less sensitive to responding to different concentrations of chitosan. Priming with 0.50% chitosan for about 60-64 h seemed to have the best effects. Thus, it suggests that seed priming with chitosan may improve the speed of germination of maize seed and benefit for seedling growth under low temperature stress.
文摘Apoptosis, especially the intrinsic mitochondrial cell death pathway, is regulated by the BCL-2 family of proteins. Defects in apoptotic machinery are one of the main mechanisms that cells employ to evade cell death and become cancerous. Targeting the apoptotic defects, either by direct inhibition of BCL-2 family proteins or through modulation of regulatory pathways, can restore cell sensitivity to cell death. This review will focus on the aspects of BCL-2 family proteins, their interactions with kinase pathways, and how novel targeted agents can help overcome the apoptotic blockades. Furthermore, functional assays, such as BH3 profiling, may help in predicting responses to chemotherapies and aid in the selection of combination therapies by determining the mitochondrial threshold for initiating cell death.
文摘Background Molecular testing is more precise compared to serology and has been widely used in genotyping blood group antigens. Single nucleotide polymorphisms (SNPs) of blood group antigens can be determined by the polymerase chain reaction with sequence specific priming (PCR-SSP) assay. Commercial high-throughput platforms can be expensive and are not approved in China. The genotype frequencies of Kidd, Kell, Duffy, Scianna, and RhCE blood group antigens in Jiangsu province were unknown. The aim of this study is sought to detect the genotype frequencies of Kidd, Kell, Duffy, Scianna, and RhCE antigens in Jiangsu Chinese Hart using molecular methods with laboratory developed tests. Methods DNA was extracted from EDTA-anticoagulated blood samples of 146 voluntary blood donors collected randomly within one month. Standard serologic assay for red blood cell antigens were also performed except the Scianna blood group antigens. PCR-SSP was designed to work under one PCR program to identify the following SNPs: JK1/JK2, KEL 1/KEL2, FYA/FYB, SC1/SC2, C/c and E/e. Results Serologic antigen results were identical to the phenotypes that were predicted from genotyping results. The allele frequencies for Jk^*01 and Jk^*02 were 0.51 and 0.49, respectively; for Fy^*A and Fy^*B 0.94 and 0.06; for RHCE^*C and RHCE^*c 0.68 and 0.32; and for RHCE^*E and RHCE^*e 0.28 and 0.72. Among 146 blood donors, all were KEL^*02/ KEL^*02 and SC^*01/SC^*01, indicating allele frequencies for KEL^*02 and SC^*01 close to 1.00. Conclusions The use of PCR-SSP working under the same condition for testing multiple antigens at the same time is practical. This approach can be effective and cost-efficient for small-scale laboratories and in developing counties. These molecular tests can be also used for identifying rare blood types.
基金National Natural Science Foundation of China(40741006,30521002,30821062).
文摘Aims Elevated atmospheric CO_(2)has the potential to enhance the net primary productivity of terrestrial ecosystems.However,the role of soil microorganisms on soil C cycling following this increased available C remains ambiguous.This study was conducted to determine how quality and quantity of plant litter inputs would affect soil microorganisms and consequently C turnover.Methods Soil microbial biomass and community structure,bacterial community-level physiological profile,and CO_(2)emission caused by different substrate C decomposition were investigated using techniques of biological measurements,chemical and stable C isotope analysis,and BIOLOG-ECO microplates in a semiarid grassland ecosystem of northern China in 2006 and 2007 by mixing three contrasting types of plant materials,C_(3)shoot litter(SC_(3)),C_(3)root litter(RC_(3)),and C4 shoot litter(SC4),into the 10-to 20-cm soil layer at rates equivalent to 0(C0),60(C60),120(C120)and 240 g C m2(C240).Important Findings Litter addition significantly enriched soil microbial biomass C and N and resulted in changes in microbial structure.Principal component analysis of microbial structure clearly differentiated among zero addition,C_(3)-plant-derived litter,and C4-plant-derived litter and among shoot-and root-derived litter of C_(3)plants;soilmicroorganismsmainly utilized carbohydrates without litter addition,carboxylic acids with C_(3)-plant-derived litter addition and amino acidswith C4-plant-derived litter addition.We also detected stimulated decomposition of older substratewith C4-plant-derived litter inputs.Our results showthat both quality and quantity of belowground litter are involved in affecting soil microbial community structure in semiarid grassland ecosystem.
基金financially supported by a Kasetsart University 72 Year Anniversary Graduate Scholarship, from the Graduate School, Kasetsart University, Thailand
文摘Low germination and vigor of rice seed associated with dry-seed broadcasting are common problems encountered by rice growers.The objectives of this study were to evaluate the role of potassium nitrate(KNO3)on the pattern of seed imbibition and to determine the effect of seed priming with KNO3 on the germination percentage,speed and uniformity of germination in rice seed.Experiment 1 compared the patterns of seed imbibition of six concentrations of KNO3(0,0.25,0.50,1.00,1.50,and 2.00%)in two rice cultivars-KDML105 and RD15.The results showed that soaking rice seed in KNO3 at higher concentrations could delay the imbibition time.The higher concentrations of KNO3 delayed the imbibition time of rice seed and took a longer time to reach the end of phases 1 and 2 compared to the lower concentrations.The patterns of seed imbibition using distilled water of both rice cultivars(KDML105 and RD15)were quite similar,but with different concentrations of KNO3,the imbibition time taken to reach the end of phases 1 and 2 was slightly postponed in KDML105 suggesting that different rice cultivars may need different imbibition times for soaking seed in the priming process.Experiment 2 evaluated the effects of seed priming with 1.0 and 2.0%KNO3 at different imbibition times.It was found that priming with 1.0%KNO3 showed better seed germination than priming with 2.0%KNO3 and seed priming with 1.0%KNO3 at the imbibition time of early phase 2(or 28 h for KDML105)improved seed germination and increased both the speed and uniformity of seed germination.The results of this study show promise for the use of priming with 1.0%KNO3 soaked until early phase 2 of seed imbibition for improving the seed germination and vigor of rice in dry seed broadcasting.