Load prediction and power prediction uncertainties are inevitable aspects of a virtual power plant(VPP).In power system economic dispatch(ED)modeling,the interval is used to describe prediction uncertainties.An ED mod...Load prediction and power prediction uncertainties are inevitable aspects of a virtual power plant(VPP).In power system economic dispatch(ED)modeling,the interval is used to describe prediction uncertainties.An ED model with interval uncertainty is established in this paper.The probability degree definition is adopted to convert the interval-based economic dispatch model into a deterministic model for the purposes of solving the modeling problem.Simulation tests are performed on a 10-machine system using professional optimization software(LINGO).The simulation results verify the validity of the proposed interval-based scheme for the economic dispatch of a power system with VPP.展开更多
Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment(TSA) has always been a tough problem in power system analysis.Fortunately, the developme...Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment(TSA) has always been a tough problem in power system analysis.Fortunately, the development of artificial intelligence and big data technologies provide the new prospective methods to this issue, and there have been some successful trials on using intelligent method, such as support vector machine(SVM) method.However, the traditional SVM method cannot avoid false classification, and the interpretability of the results needs to be strengthened and clear.This paper proposes a new strategy to solve the shortcomings of traditional SVM,which can improve the interpretability of results, and avoid the problem of false alarms and missed alarms.In this strategy, two improved SVMs, which are called aggressive support vector machine(ASVM) and conservative support vector machine(CSVM), are proposed to improve the accuracy of the classification.And two improved SVMs can ensure the stability or instability of the power system in most cases.For the small amount of cases with undetermined stability, a new concept of grey region(GR) is built to measure the uncertainty of the results, and GR can assessment the instable probability of the power system.Cases studies on IEEE 39-bus system and realistic provincial power grid illustrate the effectiveness and practicability of the proposed strategy.展开更多
Heavy-duty legged robots have been regarded as one of the important developments in the field of legged robots because of their high payload-total mass ratio,terrain adaptability,and multitasking.The problems associat...Heavy-duty legged robots have been regarded as one of the important developments in the field of legged robots because of their high payload-total mass ratio,terrain adaptability,and multitasking.The problems associated with the development and use of heavy-duty legged robots have motivated researchers to conduct many important studies,covering topics related to the mechanical structure,force distribution,control strategy,energy efficiency,etc.Overall,heavy-duty legged robots have three main characteristics:greater body masses,larger body sizes,and higher payload-total mass ratios.Thus,various heavy-duty legged robots and their performances are reviewed here.This review presents the current developments with regard to heavy-duty legged robots.Also,the main characteristics of high-performance heavy-duty legged robots are determined and conclusions are drawn.Furthermore,the current research of key techniques of heavy-duty legged robots,including the mechanical structure,force distribution,control method,and power source,is described.To assess the transportation capacity of heavy-duty legged robots,performance evaluation parameters are proposed.Finally,problems that need further research are addressed.展开更多
基金supported by the State Grid Corporation of China Project:Study on Key Technologies for Power and Frequency Control of System with Source-Grid-Load Interactions,and sponsored by NUPTSF(under Grant XJKY14018).
文摘Load prediction and power prediction uncertainties are inevitable aspects of a virtual power plant(VPP).In power system economic dispatch(ED)modeling,the interval is used to describe prediction uncertainties.An ED model with interval uncertainty is established in this paper.The probability degree definition is adopted to convert the interval-based economic dispatch model into a deterministic model for the purposes of solving the modeling problem.Simulation tests are performed on a 10-machine system using professional optimization software(LINGO).The simulation results verify the validity of the proposed interval-based scheme for the economic dispatch of a power system with VPP.
基金supported by Science and Technology Project of State Grid Corporation of ChinaNational Natural Science Foundation of China (No.51777104)China State Key Laboratory of Power System (No.SKLD16Z08)
文摘Due to the strict requirements of extremely high accuracy and fast computational speed, real-time transient stability assessment(TSA) has always been a tough problem in power system analysis.Fortunately, the development of artificial intelligence and big data technologies provide the new prospective methods to this issue, and there have been some successful trials on using intelligent method, such as support vector machine(SVM) method.However, the traditional SVM method cannot avoid false classification, and the interpretability of the results needs to be strengthened and clear.This paper proposes a new strategy to solve the shortcomings of traditional SVM,which can improve the interpretability of results, and avoid the problem of false alarms and missed alarms.In this strategy, two improved SVMs, which are called aggressive support vector machine(ASVM) and conservative support vector machine(CSVM), are proposed to improve the accuracy of the classification.And two improved SVMs can ensure the stability or instability of the power system in most cases.For the small amount of cases with undetermined stability, a new concept of grey region(GR) is built to measure the uncertainty of the results, and GR can assessment the instable probability of the power system.Cases studies on IEEE 39-bus system and realistic provincial power grid illustrate the effectiveness and practicability of the proposed strategy.
基金supported by the National Basic Research Program of China("973" Program)(Grant No.2013CB035502)the International Sci-ence and Technology Cooperation Project with Russia(Grant No.2010DFR70270)+2 种基金the National Natural Science Foundation of China(Grant No.51275106)the"111" Project(Grant No.B07018)the Key Laboratory Opening Funding of Aerospace Mechanism and Control(Grant No.HIT.KLOF.2010057)
文摘Heavy-duty legged robots have been regarded as one of the important developments in the field of legged robots because of their high payload-total mass ratio,terrain adaptability,and multitasking.The problems associated with the development and use of heavy-duty legged robots have motivated researchers to conduct many important studies,covering topics related to the mechanical structure,force distribution,control strategy,energy efficiency,etc.Overall,heavy-duty legged robots have three main characteristics:greater body masses,larger body sizes,and higher payload-total mass ratios.Thus,various heavy-duty legged robots and their performances are reviewed here.This review presents the current developments with regard to heavy-duty legged robots.Also,the main characteristics of high-performance heavy-duty legged robots are determined and conclusions are drawn.Furthermore,the current research of key techniques of heavy-duty legged robots,including the mechanical structure,force distribution,control method,and power source,is described.To assess the transportation capacity of heavy-duty legged robots,performance evaluation parameters are proposed.Finally,problems that need further research are addressed.