The excessive expansion of urbanized areas has resulted in haphazard land utili- zation, immoderate consumption of superior agricultural land and water resources, significant fragmentation of agricultural landscape, a...The excessive expansion of urbanized areas has resulted in haphazard land utili- zation, immoderate consumption of superior agricultural land and water resources, significant fragmentation of agricultural landscape, and gradual deterioration of the agro-ecological en- vironment. Combined, these factors cause poor land use efficiency. Under these circum- stances, comprehensively assessing land use efficiency for urban agriculture is a key issue in land use research. Currently, evaluation methods for agricultural land use efficiency narrowly concentrate on aspects of economic input and output. However, urban agro-ecosystems can provide diverse economic, social, and ecological services and functions. In particular, the social and ecological services and functions originating from agricultural land, which have a higher value than economic services, play a significant role in ensuring regional social, eco- logical, and environmental security. However, recent research has rarely taken these benefits into consideration. Therefore, land use value has been greatly underestimated, which has resulted in mishandled and poor land use policies. In this study, we apply Landsat imagery and social and economic statistical data for the Xi'an metropolitan zone (XMZ) to investigate agricultural multi-functionality. We develop an evaluation framework for urban agricultural land use efficiency and identify agro-ecosystem services and functions as important outputs from agricultural land. The land use efficiency of urban agriculture is then evaluated using ecosystem services models, providing a mechanism for assessing spatial-temporal changes in land use efficiency in the XMZ from 1999 to 2015. Four important conclusions are reached from this analysis. First, the rapid urbanization and agricultural transformation from traditional cereal cultivation to modern urban agriculture has resulted in steadily increasing costs, out- puts, and land use efficiency of urban agriculture. The total output value increased 41% and land use effici展开更多
植被碳水利用效率是表征生态系统碳水循环的重要指标。采用MODIS数据,利用Google Earth Engine平台计算植被碳利用效率(Carbon Use Efficiency, CUE)与水利用效率(Water Use Efficiency, WUE)。采用趋势分析、变异系数、R/S分析及偏相...植被碳水利用效率是表征生态系统碳水循环的重要指标。采用MODIS数据,利用Google Earth Engine平台计算植被碳利用效率(Carbon Use Efficiency, CUE)与水利用效率(Water Use Efficiency, WUE)。采用趋势分析、变异系数、R/S分析及偏相关分析等方法,对2000—2020年黄河流域植被CUE与WUE的时空动态进行分析,并探究水热条件对碳水利用效率的影响。结果表明:(1)2000—2020年黄河流域植被碳水利用效率年均值分别为0.61和0.68 gC m^(-2)mm^(-1);研究时限内,植被CUE呈波动下降趋势,而WUE呈波动上升趋势。(2)空间上,植被CUE呈西高东低分布,WUE相反。不同土地覆被类型的CUE表现为草地>农田>灌丛>森林;WUE表现为:农田>森林>草地>灌丛。(3)总体上,黄河流域植被CUE与温度呈负相关,与降水呈正相关;黄河流域北部植被WUE与温度和降水均呈正相关关系,黄河流域西南部植被WUE与降水负相关;(4)不同土地利用类型中,草地、森林、农田CUE与温度主要呈负相关响应,灌丛CUE主要呈正相关响应;黄土高原西北部地区草地CUE与降水呈正相关关系,而在黄河源区草地CUE与降水呈负相关关系,农田CUE对降水呈现正向反馈。(5)植被WUE与温度和降水的关系存在较强的空间异质性。降水是影响干旱,半干旱地区的草地WUE的主导因素,而高海拔地区草地WUE与温度、降水均呈负相关关系;灌丛WUE与温度成负相关关系,与降水呈正相关关系;受人类活动影响,农田WUE与温度有正相关关系。研究结果对于深入理解黄河流域植被恢复与气候变化双重背景下区域的植被碳水耦合机理有重要意义。展开更多
Young elm trees belt-pumpkin strip intercropping was studied to solve the actual problem of resource losses in the large barren area resulted from reconverting cultivated land into forest in the agro-pastoral ecotone ...Young elm trees belt-pumpkin strip intercropping was studied to solve the actual problem of resource losses in the large barren area resulted from reconverting cultivated land into forest in the agro-pastoral ecotone in northern China. The final objective was to realize effective utilization of the barren land with both ecological improvement and economic development. Field experiments were conducted together with laboratory analysis. The results indicated that the soil moisture level was remarkably increased in young elm trees belt-pumpkin strip intereropping because the pumpkin vines covered the gap between pumpkin planting-furrow and elm trees belt. The water use efficiency of the intercropping system was increased by 23.7-163.3% as compared with the single cropping. Elm trees belt-pumpkin strip intercropping changed the sequential succession trend of the grasses growing in the gap of the pumpkin planting-furrow. The annual grasses become the dominant vegetation. The nutritive value as fodder and yield of the annual grasses were also increased remarkably. The biomass of pumpkin, elm trees and grasses under intercropping increased by 24.4, 28.4 and 144.4%, respectively, as compared with those under single cropping. The land use efficiency was increased by 132%. It was also indicated that the soil erosion from the intercropping land was not increased due to pumpkin plantation. The differences in the soil erosion among intercropped area, elm trees belt and pumpkin strip with single cropping were not remarkable. Therefore, it was concluded that young elm trees belt-pumpkin strip intercropping is an effective way to utilize the barren land between the young elm trees belt and realize synergistic enhancement of ecological benefit and economic profit.展开更多
植被的降水利用效率(Precipitation use efficiency,PUE)是表征植被生产力对降水量时空动态变化响应特征的重要指示器,对了解干旱环境下植被生产力的变化尤为关键。基于中国干旱半干旱区2000—2020年的植被净初级生产力、降水量、气温...植被的降水利用效率(Precipitation use efficiency,PUE)是表征植被生产力对降水量时空动态变化响应特征的重要指示器,对了解干旱环境下植被生产力的变化尤为关键。基于中国干旱半干旱区2000—2020年的植被净初级生产力、降水量、气温、土地利用类型和地形等数据,分析了中国干旱半干旱区植被降水利用效率的时空特征及其变化趋势,探究了植被PUE与气候因子的关联以及气候变化下土地利用和地形对植被PUE的影响。研究结果表明:(1)2000—2020年中国干旱半干旱区植被平均PUE为0.41 g C m^(-2)mm^(-1),不同土地利用类型下植被PUE的大小顺序为:草地<湿地<灌木<耕地<林地。(2)植被PUE年际变化整体呈现波动上升趋势,上升速率为0.004 g C m^(-2)mm^(-1),其中呈现显著改善趋势的面积占总面积的12.24%。(3)气温升高在不同程度上对大多数植被PUE起到促进作用,而降水增多则会抑制绝大多数区域的植被PUE。植被较少的区域,植被降水利用效率与气温、降水两气候因子基本无关。(4)随着海拔的升高,植被PUE呈现出先减后增再减的趋势。随着海拔的变化,气温依然与植被PUE呈正相关,降水依然与植被PUE呈负相关。研究结果可为中国干旱半干旱区生态系统保护、恢复以及可持续利用提供科学参考。展开更多
基金National Natural Science Foundation of China, No.41271550 Humanities and Social Sciences Project of Ministry of Education in the West and the Frontier Areas, No. 12XJC790003
文摘The excessive expansion of urbanized areas has resulted in haphazard land utili- zation, immoderate consumption of superior agricultural land and water resources, significant fragmentation of agricultural landscape, and gradual deterioration of the agro-ecological en- vironment. Combined, these factors cause poor land use efficiency. Under these circum- stances, comprehensively assessing land use efficiency for urban agriculture is a key issue in land use research. Currently, evaluation methods for agricultural land use efficiency narrowly concentrate on aspects of economic input and output. However, urban agro-ecosystems can provide diverse economic, social, and ecological services and functions. In particular, the social and ecological services and functions originating from agricultural land, which have a higher value than economic services, play a significant role in ensuring regional social, eco- logical, and environmental security. However, recent research has rarely taken these benefits into consideration. Therefore, land use value has been greatly underestimated, which has resulted in mishandled and poor land use policies. In this study, we apply Landsat imagery and social and economic statistical data for the Xi'an metropolitan zone (XMZ) to investigate agricultural multi-functionality. We develop an evaluation framework for urban agricultural land use efficiency and identify agro-ecosystem services and functions as important outputs from agricultural land. The land use efficiency of urban agriculture is then evaluated using ecosystem services models, providing a mechanism for assessing spatial-temporal changes in land use efficiency in the XMZ from 1999 to 2015. Four important conclusions are reached from this analysis. First, the rapid urbanization and agricultural transformation from traditional cereal cultivation to modern urban agriculture has resulted in steadily increasing costs, out- puts, and land use efficiency of urban agriculture. The total output value increased 41% and land use effici
基金supported by the National Key Technologies R&D Program of China during the 11th Five-Year Plan period(2006BAD15B05)the Science and Technology R&D Project of Hebei Province,China(06220901D)
文摘Young elm trees belt-pumpkin strip intercropping was studied to solve the actual problem of resource losses in the large barren area resulted from reconverting cultivated land into forest in the agro-pastoral ecotone in northern China. The final objective was to realize effective utilization of the barren land with both ecological improvement and economic development. Field experiments were conducted together with laboratory analysis. The results indicated that the soil moisture level was remarkably increased in young elm trees belt-pumpkin strip intereropping because the pumpkin vines covered the gap between pumpkin planting-furrow and elm trees belt. The water use efficiency of the intercropping system was increased by 23.7-163.3% as compared with the single cropping. Elm trees belt-pumpkin strip intercropping changed the sequential succession trend of the grasses growing in the gap of the pumpkin planting-furrow. The annual grasses become the dominant vegetation. The nutritive value as fodder and yield of the annual grasses were also increased remarkably. The biomass of pumpkin, elm trees and grasses under intercropping increased by 24.4, 28.4 and 144.4%, respectively, as compared with those under single cropping. The land use efficiency was increased by 132%. It was also indicated that the soil erosion from the intercropping land was not increased due to pumpkin plantation. The differences in the soil erosion among intercropped area, elm trees belt and pumpkin strip with single cropping were not remarkable. Therefore, it was concluded that young elm trees belt-pumpkin strip intercropping is an effective way to utilize the barren land between the young elm trees belt and realize synergistic enhancement of ecological benefit and economic profit.
文摘植被的降水利用效率(Precipitation use efficiency,PUE)是表征植被生产力对降水量时空动态变化响应特征的重要指示器,对了解干旱环境下植被生产力的变化尤为关键。基于中国干旱半干旱区2000—2020年的植被净初级生产力、降水量、气温、土地利用类型和地形等数据,分析了中国干旱半干旱区植被降水利用效率的时空特征及其变化趋势,探究了植被PUE与气候因子的关联以及气候变化下土地利用和地形对植被PUE的影响。研究结果表明:(1)2000—2020年中国干旱半干旱区植被平均PUE为0.41 g C m^(-2)mm^(-1),不同土地利用类型下植被PUE的大小顺序为:草地<湿地<灌木<耕地<林地。(2)植被PUE年际变化整体呈现波动上升趋势,上升速率为0.004 g C m^(-2)mm^(-1),其中呈现显著改善趋势的面积占总面积的12.24%。(3)气温升高在不同程度上对大多数植被PUE起到促进作用,而降水增多则会抑制绝大多数区域的植被PUE。植被较少的区域,植被降水利用效率与气温、降水两气候因子基本无关。(4)随着海拔的升高,植被PUE呈现出先减后增再减的趋势。随着海拔的变化,气温依然与植被PUE呈正相关,降水依然与植被PUE呈负相关。研究结果可为中国干旱半干旱区生态系统保护、恢复以及可持续利用提供科学参考。