The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development o...The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development of a modeling and simulation tool is crucial.In this study,a TMS simulation model library was created using MATLAB/SIMULINK.To simplify the complexity of the Vapor Cycle System(VCS)model,a Response Surface Model(RSM)was constructed using the Monte Carlo method and validated through simulation experiments.Taking the F-22 fighter TMS as an example,a thermal dynamic simulation model was constructed to analyze the variation of thermal response parameters in key subsystems and elucidate their coupling relationships.Furthermore,the impact of total fuel flow and ram air flow on the TMS was investigated.The findings demonstrate the existence of an optimal total fuel flow that achieves a balance between maximizing fuel heat sink utilization and minimizing bleed air demand.The adaptive distribution of fuel and ram air flow was found to enhance aircraft thermal management performance.This study contributes to improving modeling efficiency and enhancing the understanding of the thermal dynamic characteristics of TMS,thereby facilitating further optimization in aircraft TMS design.展开更多
In this work, we performed in situ nanoindentation in TEM to capture the real-time dislocation and twinning activities in pure Mg during loading and unloading. We demonstrated that the screw component of dislocations ...In this work, we performed in situ nanoindentation in TEM to capture the real-time dislocation and twinning activities in pure Mg during loading and unloading. We demonstrated that the screw component of dislocations glides continuously, while the edge components rapidly become sessile during loading. The twin tip propagation is intermittent, whereas the twin boundary migration is more continuous. During unloading, we observed the elastic strain relaxation causes both dislocation retraction and detwinning. Moreover,we note that the plastic zone comprised of dislocations in Mg is well-defined, which contrasts with the diffused plastic zones observed in face-centered cubic metals under the nanoindentation impressions. Additionally, molecular dynamics simulations were performed to study the formation and evolution of deformation-induced crystallographic defects at the early stages of indentation. We observed that,in addition to dislocations, the I1stacking fault bounded with a <1/2c+p> Frank loop can be generated from the plastic zone ahead of the indenter, and potentially serve as a nucleation source for abundant dislocations observed experimentally. These new findings are anticipated to provide new knowledge on the deformation mechanisms of Mg, which are difficult to obtain through conventional ex situ approaches. These observations may serve as a baseline for simulation work that investigate the dynamics of dislocation slip and twinning in Mg and alloys.展开更多
文摘The modern aircraft Thermal Management System(TMS)faces significant challenges due to increasing thermal loads and limited heat dissipation pathways.To optimize TMS during the conceptual design stage,the development of a modeling and simulation tool is crucial.In this study,a TMS simulation model library was created using MATLAB/SIMULINK.To simplify the complexity of the Vapor Cycle System(VCS)model,a Response Surface Model(RSM)was constructed using the Monte Carlo method and validated through simulation experiments.Taking the F-22 fighter TMS as an example,a thermal dynamic simulation model was constructed to analyze the variation of thermal response parameters in key subsystems and elucidate their coupling relationships.Furthermore,the impact of total fuel flow and ram air flow on the TMS was investigated.The findings demonstrate the existence of an optimal total fuel flow that achieves a balance between maximizing fuel heat sink utilization and minimizing bleed air demand.The adaptive distribution of fuel and ram air flow was found to enhance aircraft thermal management performance.This study contributes to improving modeling efficiency and enhancing the understanding of the thermal dynamic characteristics of TMS,thereby facilitating further optimization in aircraft TMS design.
基金supported by the National Science Foundation (Division of Materials Research,Program Manager: Dr.Jonathan Madison) under Grant No.2144973financially supported by the startup fund from Drexel University。
文摘In this work, we performed in situ nanoindentation in TEM to capture the real-time dislocation and twinning activities in pure Mg during loading and unloading. We demonstrated that the screw component of dislocations glides continuously, while the edge components rapidly become sessile during loading. The twin tip propagation is intermittent, whereas the twin boundary migration is more continuous. During unloading, we observed the elastic strain relaxation causes both dislocation retraction and detwinning. Moreover,we note that the plastic zone comprised of dislocations in Mg is well-defined, which contrasts with the diffused plastic zones observed in face-centered cubic metals under the nanoindentation impressions. Additionally, molecular dynamics simulations were performed to study the formation and evolution of deformation-induced crystallographic defects at the early stages of indentation. We observed that,in addition to dislocations, the I1stacking fault bounded with a <1/2c+p> Frank loop can be generated from the plastic zone ahead of the indenter, and potentially serve as a nucleation source for abundant dislocations observed experimentally. These new findings are anticipated to provide new knowledge on the deformation mechanisms of Mg, which are difficult to obtain through conventional ex situ approaches. These observations may serve as a baseline for simulation work that investigate the dynamics of dislocation slip and twinning in Mg and alloys.