Background: DiGeorge syndrome (also known as velo-cardio-facial syndrome) is a rare multisystem genetic disorder occurring in approximately 1 in 4000 to 1 in 6000 live births [1]. Although advances in genetic screenin...Background: DiGeorge syndrome (also known as velo-cardio-facial syndrome) is a rare multisystem genetic disorder occurring in approximately 1 in 4000 to 1 in 6000 live births [1]. Although advances in genetic screening have improved diagnosis in developed countries, the condition remains underdiagnosed in developing nations such as the Republic of Moldova, where access to genetic testing and family planning services is limited. Routine prenatal screening usually includes regular ultrasounds, monitoring of blood pressure, complete blood counts, coagulation studies, glucose, urine protein, and urine culture. Current ultrasound techniques have limitations in detecting this syndrome due to variability in interpretation, and genetic testing is often performed based on clinical discretion. The ultrasound could potentially point towards a genetic problem, as in DiGeorge, if multiple cardiac malformations are spotted in utero, but most cases such as this one are diagnosed after birth while being described as totally normal on prenatal ultrasound. Purpose: This study aims to highlight the diagnostic challenges and the need for comprehensive evaluation in identifying DiGeorge syndrome, emphasizing the importance of considering the syndrome as a whole rather than focusing on isolated organ system issues. Method: We present a case report of a 6-month-old girl who, after an uneventful pregnancy and normal prenatal ultrasound, presented with cardiac insufficiency. Following extensive investigations and multiple surgical interventions, DiGeorge syndrome was diagnosed at 9 months of age. Results: The patient’s diagnosis was delayed due to the lack of prenatal markers and the reliance on separate investigations of affected organ systems. Despite several interventions aimed at managing her symptoms, the final diagnosis was made after observing the association of multiple clinical features and conducting comprehensive genetic testing. Conclusions: This case underscores the importance of a holistic approach to diagnosis, which inv展开更多
Objective: To detect the relationship between conotruncal heart malformation and TBX,gene. Methods: We analyzed 20 case of conotruncal heart malformation for TBX1 mutation by single strand con formation polymorphism(S...Objective: To detect the relationship between conotruncal heart malformation and TBX,gene. Methods: We analyzed 20 case of conotruncal heart malformation for TBX1 mutation by single strand con formation polymorphism(SSCP) and sequencing. Results: The SSCP changes were found in exon 3、5 、 9 of TBX1, the sequence analysis identified a base T→C at cDNA sequence of 549(sign T549C), C793T, G1447T; and these changes were found in normal chromosome. Conclusion: There are polymorphism in TBX1 among Chinese.展开更多
文摘Background: DiGeorge syndrome (also known as velo-cardio-facial syndrome) is a rare multisystem genetic disorder occurring in approximately 1 in 4000 to 1 in 6000 live births [1]. Although advances in genetic screening have improved diagnosis in developed countries, the condition remains underdiagnosed in developing nations such as the Republic of Moldova, where access to genetic testing and family planning services is limited. Routine prenatal screening usually includes regular ultrasounds, monitoring of blood pressure, complete blood counts, coagulation studies, glucose, urine protein, and urine culture. Current ultrasound techniques have limitations in detecting this syndrome due to variability in interpretation, and genetic testing is often performed based on clinical discretion. The ultrasound could potentially point towards a genetic problem, as in DiGeorge, if multiple cardiac malformations are spotted in utero, but most cases such as this one are diagnosed after birth while being described as totally normal on prenatal ultrasound. Purpose: This study aims to highlight the diagnostic challenges and the need for comprehensive evaluation in identifying DiGeorge syndrome, emphasizing the importance of considering the syndrome as a whole rather than focusing on isolated organ system issues. Method: We present a case report of a 6-month-old girl who, after an uneventful pregnancy and normal prenatal ultrasound, presented with cardiac insufficiency. Following extensive investigations and multiple surgical interventions, DiGeorge syndrome was diagnosed at 9 months of age. Results: The patient’s diagnosis was delayed due to the lack of prenatal markers and the reliance on separate investigations of affected organ systems. Despite several interventions aimed at managing her symptoms, the final diagnosis was made after observing the association of multiple clinical features and conducting comprehensive genetic testing. Conclusions: This case underscores the importance of a holistic approach to diagnosis, which inv
文摘Objective: To detect the relationship between conotruncal heart malformation and TBX,gene. Methods: We analyzed 20 case of conotruncal heart malformation for TBX1 mutation by single strand con formation polymorphism(SSCP) and sequencing. Results: The SSCP changes were found in exon 3、5 、 9 of TBX1, the sequence analysis identified a base T→C at cDNA sequence of 549(sign T549C), C793T, G1447T; and these changes were found in normal chromosome. Conclusion: There are polymorphism in TBX1 among Chinese.