采用超细纤维开纤率(包括移位开纤率和裂离开纤率)、减量率、吸水性、毛效和纤维脱落性等综合评价指标,探讨了氢氧化钠浓度、温度和时间及机械力作用对超细纤维织物开纤效果的影响;运用正交试验方法,确定了复合超细纤维开纤的最佳工艺条...采用超细纤维开纤率(包括移位开纤率和裂离开纤率)、减量率、吸水性、毛效和纤维脱落性等综合评价指标,探讨了氢氧化钠浓度、温度和时间及机械力作用对超细纤维织物开纤效果的影响;运用正交试验方法,确定了复合超细纤维开纤的最佳工艺条件:NaOH浓度5 g/L、温度110℃、时间45 m in;并进一步证明了机械力作用能促进开纤效果。展开更多
Currently,photocatalytic water splitting is regarded as promising technology in renewable energy generation.However,the conversion efficiency suffers great restriction due to the rapid recombination of charge carriers...Currently,photocatalytic water splitting is regarded as promising technology in renewable energy generation.However,the conversion efficiency suffers great restriction due to the rapid recombination of charge carriers.Rational designed the structure and doping elements become important alternative routes to improve the performance of photocatalyst.In this work,we rational designed oxygen-doped graphitic carbon nitride(OCN)nanotubes derived from supermolecular intermediates for photocata lytic water splitting.The as prepared OCN nanotubes exhibit an outstanding hydrogen evolution rate of 73.84μmol h^(-1),outperforming the most of reported one dimensional(1D)g-C_(3)N_(4) previously.Due to the rational oxygen doping,the band structure of g-C_(3)N_(4) is meliorated,which can narrow the band gap and reduce the recombination rate of photogene rated carriers.Furthermore,the hollow nanotube structure of OCN also provide multiple diffuse reflection during photocata lytic reaction,which can significantly promote the utilization capacity of visible light and enhance the photocatalytic water splitting performance.It is believed that our work not only rationally controls the nanostructure,but also introduces useful heteroatom into the matrix of photocatalyst,which provides an effective way to design high-efficiency g-C_(3)N_(4) photocatalyst.展开更多
Relationship between the activity for photocatalytic H_(2)O overall splitting(HOS)and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram,and specially the d^(10)electro...Relationship between the activity for photocatalytic H_(2)O overall splitting(HOS)and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram,and specially the d^(10)electronic configuration in valley bottom exhibits inert activity,which seriously fetters the development of catalytic materials with great potentials.Herein,In d^(10)electronic configuration of In_(2)O_(3)was activated by phosphorus atoms replacing its lattice oxygen to regulate the collocation of the ascended In 5p-band(Inɛ5p)and descended O 2p-band(Oɛ2p)centers as efficient active sites for chemisorption to*OH and*H during forward HOS,respectively,along with a declined In 4d-band center(Inɛ4d)to inhibit its backward reaction.A stable STH efficiency of 2.23%under AM 1.5 G irradiation at 65°C has been obtained over the activated d^(10)electronic configuration with a lowered activation energy for H_(2)evolution,verified by femtosecond transient absorption spectroscopy,in situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations of dynamics.These findings devote to activating d^(10)electronic configuration for resolving the reaction energy barrier and dynamical bottleneck of forward HOS,which expands the exploration of high-efficiency catalytic materials.展开更多
Although monoclinic WO3 is widely studied as a prototypical photoanode material for solar water splitting,limited success,hitherto,in fabricating WO3 photoanodes that simultaneously demonstrate high efficiency and rep...Although monoclinic WO3 is widely studied as a prototypical photoanode material for solar water splitting,limited success,hitherto,in fabricating WO3 photoanodes that simultaneously demonstrate high efficiency and reproducibility has been realized.The difficulty in controlling both the efficiency and reproducibility is derived from the ever-changing structures/compositions and chemical environments of the precursors,such as peroxytungstic acid and freshly prepared tungstic acid,which render the fabrication processes of the WO3 photoanodes particularly uncontrollable.Herein,a highly reproducible sol-gel process was developed to establish efficient and translucent WO3 photoanodes using a chemically stable ammonium metatungstate precursor.Under standard simulated sunlight of air mass 1.5 G,100 m W cm-2,the WO3 photoanode delivered photocurrent densities of ca.2.05 and2.25 m A cm^-2at 1.23 V versus the reversible hydrogen electrode(RHE),when tested in 1 mol L^-1H2SO4 and CH3SO3H,respectively.Hence,the WO3 photoanodes fabricated herein are one of the WO3 photoanodes with the highest performance ever reported.The reproducibility of the fabrication scheme was evaluated by testing 50 randomly selected WO3 samples in1 mol L^-1H2SO4,which yielded an average photocurrent density of 1.8 m A cm^-2at 1.23 VRHEwith a small standard deviation.Additionally,the effectiveness of the ammonium metatungstate precursor solution was maintained for at least 3weeks,when compared with the associated upper-limit values of peroxytungstic and tungstic acid-based precursors after 3 d.This study presents a key step to the future development of WO3 photoanodes for efficient solar water splitting.展开更多
提出一种采用图形加速的三角网格模型实时切分的方法。针对传统的三角网格实时切分方法普遍效率不高的问题,提出利用Open GL的拾取机制的快速、有效,将屏幕曲线映射到模型上,得到切分边缘的三角面片。并利用网格的AIF(Adjacency and Inc...提出一种采用图形加速的三角网格模型实时切分的方法。针对传统的三角网格实时切分方法普遍效率不高的问题,提出利用Open GL的拾取机制的快速、有效,将屏幕曲线映射到模型上,得到切分边缘的三角面片。并利用网格的AIF(Adjacency and Incidence Framework)数据结构和当前图像场景的视角矩阵优化网格模型交线生成追踪过程。然后将相交的三角面片重新三角化,构建新的拓扑结构。最后分离模型,实现模型的快速切分。实验结果表明,该方法能够快速有效地完成模型的实时切分。展开更多
文摘采用超细纤维开纤率(包括移位开纤率和裂离开纤率)、减量率、吸水性、毛效和纤维脱落性等综合评价指标,探讨了氢氧化钠浓度、温度和时间及机械力作用对超细纤维织物开纤效果的影响;运用正交试验方法,确定了复合超细纤维开纤的最佳工艺条件:NaOH浓度5 g/L、温度110℃、时间45 m in;并进一步证明了机械力作用能促进开纤效果。
基金financially supported by the Key-Area Research and Development Program of Guangdong Province(2019B010937001)the National Natural Science Foundation of China(50702022,51577070,51702056 and U1601208)+1 种基金Natural Science Foundation of Guangdong Province(2019A1515012129)Science and Technology Planning Project of Guangdong Province(2016B090932005)。
文摘Currently,photocatalytic water splitting is regarded as promising technology in renewable energy generation.However,the conversion efficiency suffers great restriction due to the rapid recombination of charge carriers.Rational designed the structure and doping elements become important alternative routes to improve the performance of photocatalyst.In this work,we rational designed oxygen-doped graphitic carbon nitride(OCN)nanotubes derived from supermolecular intermediates for photocata lytic water splitting.The as prepared OCN nanotubes exhibit an outstanding hydrogen evolution rate of 73.84μmol h^(-1),outperforming the most of reported one dimensional(1D)g-C_(3)N_(4) previously.Due to the rational oxygen doping,the band structure of g-C_(3)N_(4) is meliorated,which can narrow the band gap and reduce the recombination rate of photogene rated carriers.Furthermore,the hollow nanotube structure of OCN also provide multiple diffuse reflection during photocata lytic reaction,which can significantly promote the utilization capacity of visible light and enhance the photocatalytic water splitting performance.It is believed that our work not only rationally controls the nanostructure,but also introduces useful heteroatom into the matrix of photocatalyst,which provides an effective way to design high-efficiency g-C_(3)N_(4) photocatalyst.
文摘Relationship between the activity for photocatalytic H_(2)O overall splitting(HOS)and the electron occupancy on d orbits of the active component in photocatalysts shows volcanic diagram,and specially the d^(10)electronic configuration in valley bottom exhibits inert activity,which seriously fetters the development of catalytic materials with great potentials.Herein,In d^(10)electronic configuration of In_(2)O_(3)was activated by phosphorus atoms replacing its lattice oxygen to regulate the collocation of the ascended In 5p-band(Inɛ5p)and descended O 2p-band(Oɛ2p)centers as efficient active sites for chemisorption to*OH and*H during forward HOS,respectively,along with a declined In 4d-band center(Inɛ4d)to inhibit its backward reaction.A stable STH efficiency of 2.23%under AM 1.5 G irradiation at 65°C has been obtained over the activated d^(10)electronic configuration with a lowered activation energy for H_(2)evolution,verified by femtosecond transient absorption spectroscopy,in situ diffuse reflectance infrared Fourier transform spectroscopy and theoretical calculations of dynamics.These findings devote to activating d^(10)electronic configuration for resolving the reaction energy barrier and dynamical bottleneck of forward HOS,which expands the exploration of high-efficiency catalytic materials.
基金supported by the Ministry of Education(MOE)Tier 1(M4011959 and M4011528)the National Key Research and Development Program of China(2018YFA0209303)+1 种基金the National Natural Science Foundation of China(U1663228 and 51902153)the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions。
文摘Although monoclinic WO3 is widely studied as a prototypical photoanode material for solar water splitting,limited success,hitherto,in fabricating WO3 photoanodes that simultaneously demonstrate high efficiency and reproducibility has been realized.The difficulty in controlling both the efficiency and reproducibility is derived from the ever-changing structures/compositions and chemical environments of the precursors,such as peroxytungstic acid and freshly prepared tungstic acid,which render the fabrication processes of the WO3 photoanodes particularly uncontrollable.Herein,a highly reproducible sol-gel process was developed to establish efficient and translucent WO3 photoanodes using a chemically stable ammonium metatungstate precursor.Under standard simulated sunlight of air mass 1.5 G,100 m W cm-2,the WO3 photoanode delivered photocurrent densities of ca.2.05 and2.25 m A cm^-2at 1.23 V versus the reversible hydrogen electrode(RHE),when tested in 1 mol L^-1H2SO4 and CH3SO3H,respectively.Hence,the WO3 photoanodes fabricated herein are one of the WO3 photoanodes with the highest performance ever reported.The reproducibility of the fabrication scheme was evaluated by testing 50 randomly selected WO3 samples in1 mol L^-1H2SO4,which yielded an average photocurrent density of 1.8 m A cm^-2at 1.23 VRHEwith a small standard deviation.Additionally,the effectiveness of the ammonium metatungstate precursor solution was maintained for at least 3weeks,when compared with the associated upper-limit values of peroxytungstic and tungstic acid-based precursors after 3 d.This study presents a key step to the future development of WO3 photoanodes for efficient solar water splitting.
文摘提出一种采用图形加速的三角网格模型实时切分的方法。针对传统的三角网格实时切分方法普遍效率不高的问题,提出利用Open GL的拾取机制的快速、有效,将屏幕曲线映射到模型上,得到切分边缘的三角面片。并利用网格的AIF(Adjacency and Incidence Framework)数据结构和当前图像场景的视角矩阵优化网格模型交线生成追踪过程。然后将相交的三角面片重新三角化,构建新的拓扑结构。最后分离模型,实现模型的快速切分。实验结果表明,该方法能够快速有效地完成模型的实时切分。