This study explores the impact of hyperparameter optimization on machine learning models for predicting cardiovascular disease using data from an IoST(Internet of Sensing Things)device.Ten distinct machine learning ap...This study explores the impact of hyperparameter optimization on machine learning models for predicting cardiovascular disease using data from an IoST(Internet of Sensing Things)device.Ten distinct machine learning approaches were implemented and systematically evaluated before and after hyperparameter tuning.Significant improvements were observed across various models,with SVM and Neural Networks consistently showing enhanced performance metrics such as F1-Score,recall,and precision.The study underscores the critical role of tailored hyperparameter tuning in optimizing these models,revealing diverse outcomes among algorithms.Decision Trees and Random Forests exhibited stable performance throughout the evaluation.While enhancing accuracy,hyperparameter optimization also led to increased execution time.Visual representations and comprehensive results support the findings,confirming the hypothesis that optimizing parameters can effectively enhance predictive capabilities in cardiovascular disease.This research contributes to advancing the understanding and application of machine learning in healthcare,particularly in improving predictive accuracy for cardiovascular disease management and intervention strategies.展开更多
We propose a new nonparametric test based on the rank difference between the paired sample for testing the equality of the marginal distributions from a bivariate distribution. We also consider a modification of the n...We propose a new nonparametric test based on the rank difference between the paired sample for testing the equality of the marginal distributions from a bivariate distribution. We also consider a modification of the novel nonparametric test based on the test proposed by Baumgartern, Weiβ, and Schindler (1998). An extensive numerical power comparison for various parametric and nonparametric tests was conducted under a wide range of bivariate distributions for small sample sizes. The two new nonparametric tests have comparable power to the paired t test for the data simulated from bivariate normal distributions, and are generally more powerful than the paired t test and other commonly used nonparametric tests in several important bivariate distributions.展开更多
基金supported and funded by the Deanship of Scientific Research at Imam Mohammad Ibn Saud Islamic University(IMSIU),Grant Number IMSIU-RG23151.
文摘This study explores the impact of hyperparameter optimization on machine learning models for predicting cardiovascular disease using data from an IoST(Internet of Sensing Things)device.Ten distinct machine learning approaches were implemented and systematically evaluated before and after hyperparameter tuning.Significant improvements were observed across various models,with SVM and Neural Networks consistently showing enhanced performance metrics such as F1-Score,recall,and precision.The study underscores the critical role of tailored hyperparameter tuning in optimizing these models,revealing diverse outcomes among algorithms.Decision Trees and Random Forests exhibited stable performance throughout the evaluation.While enhancing accuracy,hyperparameter optimization also led to increased execution time.Visual representations and comprehensive results support the findings,confirming the hypothesis that optimizing parameters can effectively enhance predictive capabilities in cardiovascular disease.This research contributes to advancing the understanding and application of machine learning in healthcare,particularly in improving predictive accuracy for cardiovascular disease management and intervention strategies.
基金Supported by Beijing Natural Science Foundation(Z190004,JQ20029)Key Program of Joint Funds of the National Natural Science Foundation of China(U19B2040)Capital Health Research and Development of Special(2020-2-1081)。
文摘We propose a new nonparametric test based on the rank difference between the paired sample for testing the equality of the marginal distributions from a bivariate distribution. We also consider a modification of the novel nonparametric test based on the test proposed by Baumgartern, Weiβ, and Schindler (1998). An extensive numerical power comparison for various parametric and nonparametric tests was conducted under a wide range of bivariate distributions for small sample sizes. The two new nonparametric tests have comparable power to the paired t test for the data simulated from bivariate normal distributions, and are generally more powerful than the paired t test and other commonly used nonparametric tests in several important bivariate distributions.