Leaf morphogenesis is strictly controlled not only by intrinsic genetic factors, such as transcriptional factors, but also by environmental cues, such as light, water and pathogens. Nevertheless, the molecular mechani...Leaf morphogenesis is strictly controlled not only by intrinsic genetic factors, such as transcriptional factors, but also by environmental cues, such as light, water and pathogens. Nevertheless, the molecular mechanism of how leaf morphogenesis is regulated by genetic programs and environmental cues is far from clear. Numerous series of events demonstrate that plant hormones, mostly small and simple molecules, play crucial roles in plant growth and development, and in responses of plants to environmental cues such as light. With more and more genetics and molecular evidence obtained from the model plant Arabidopsis, several fundamental aspects of leaf morphogenesis including the initiation of leaf primordia, the determination of leaf axes, the regulation of cell division and expansion in leaves have been gradually unveiled. Among these phytohormones, auxin is found to be essential in the regulation of leaf morphogenesis.展开更多
Proteins are the workhorse molecules of the cell, which are obtained by folding long chains of amino acids. Since not all shapes are obtained as a folded chain of amino acids, there should be global geometrical constr...Proteins are the workhorse molecules of the cell, which are obtained by folding long chains of amino acids. Since not all shapes are obtained as a folded chain of amino acids, there should be global geometrical constraints on the shape. Moreover, since the function of a protein is largely determined by its shape, constraints on the shape should have some influence on its interaction with other proteins. In this paper, we consider global geometrical constraints on the shape of proteins. Using a mathematical toy model, in which proteins are represented as closed chains of tetrahedrons, we have identified not only global geometrical constraints on the shape of proteins, but also their influence on protein interactions. As an example, we show that a garlic-bulb like structure appears as a result of the constraints. Regarding the influence of global geometrical constraints on interactions, we consider their influence on the structural coupling of two distal sites in allosteric regulation. We then show the inseparable relationship between global geometrical constraints and protein interactions;i.e. they are different sides of the same coin. This finding could be important for the understanding of the basic mechanisms of allosteric regulation of protein functions.展开更多
Nanofiber core-spun yarn(NCSY)combines the advantages of traditional fibers and nanofibers to be widely used in smart wearable textiles,biomedical textiles,and functional textiles.Here,for the first time,the forming p...Nanofiber core-spun yarn(NCSY)combines the advantages of traditional fibers and nanofibers to be widely used in smart wearable textiles,biomedical textiles,and functional textiles.Here,for the first time,the forming process of NCSY and its shape regulation mechanism were explored via finite element analysis and response surface analysis method to obtain mathematical model for predicting the various forms of yarn.As proof-of-concept applications,shape-controllable nanofiber core-spun yarns were prepared for thermal–moisture management and solar steam generation,respectively.The as-obtained shape-controllable PAN nanofiber/cotton composite yarns could achieve an interval control of average water transfer velocity in the horizontal(0.17–0.24 cm min^(-1))and vertical(0.24–0.33 cm min^(-1))directions within 30 min due to the arrangement of PAN nanofibers causes microchannels and hydrophilicity,matching the sweat secretion of human bodies under dynamic or static conditions and realizing the purpose of thermal and moisture comfort.Furthermore,PAN nanofiber wrapped CNTs/cotton composite yarn-based(PAN@CNTs-NCSY)evaporator was designed,which shows a fast water evaporation rate of 1.40 kg m^(-2)h^(-1),exceeding in most fabric-based evaporators reported to date.These findings have guiding significance for preparing rich style NCSY according to demand and designing functional and intelligent textiles via adjusting the type of core and shell fibers.展开更多
RNA-binding proteins(RBPs)are components of the post-transcriptional regulatory system,but their regulatory effects on complex traits remain unknown.Using an integrated strategy involving map-based cloning,functional ...RNA-binding proteins(RBPs)are components of the post-transcriptional regulatory system,but their regulatory effects on complex traits remain unknown.Using an integrated strategy involving map-based cloning,functional characterizations,and transcriptomic and population genomic analyses,we revealed that RBP-K(LOC_Os08g23120),RBP-A(LOC_Os11g41890),and RBP-J(LOC_Os10g33230)encode proteins that form an RBP-A-J-K complex that negatively regulates rice yield-related traits.Examinations of the RBP-A-J-K complex indicated RBP-K functions as a relatively non-specific RBP chaperone that enables RBP-A and RBP-J to function normally.Additionally,RBP-J most likely affects GA pathways,resulting in considerable increases in grain and panicle lengths,but decreases in grain width and thickness.In contrast,RBP-A negatively regulates the expression of genes most likely involved in auxin-regulated pathways controlling cell wall elongation and carbohydrate transport,with substantial effects on the rice grain filling process as well as grain length and weight.Evolutionarily,RBP-K is relatively ancient and highly conserved,whereas RBP-J and RBP-A are more diverse.Thus,the RBP-A-J-K complex may represent a typical functional model for many RBPs and protein complexes that function at transcriptional and post-transcriptional levels in plants and animals for increased functional consistency,efficiency,and versatility,as well as increased evolutionary potential.Our results clearly demonstrate the importance of RBP-mediated post-transcriptional regulation for the diversity of complex traits.Furthermore,rice grain yield and quality may be enhanced by introducing various complete or partial loss-of-function mutations to specific RBP genes using clustered regularly interspaced palindromic repeats(CRISPR)/CRISPR-associated protein 9 technology and by exploiting desirable natural tri-genic allelic combinations at the loci encoding the components of the RBP-A-J-K complex through marker-assisted selection.展开更多
基金Publication of this paper is supported by the National Natural Science Foundation of China (30624808) and Science Publication Foundation of the Chinese Academy of Sciences.Acknowledgements We thank Xianhui Hou (Peking University) for helpful suggestions and valuable discussions.
文摘Leaf morphogenesis is strictly controlled not only by intrinsic genetic factors, such as transcriptional factors, but also by environmental cues, such as light, water and pathogens. Nevertheless, the molecular mechanism of how leaf morphogenesis is regulated by genetic programs and environmental cues is far from clear. Numerous series of events demonstrate that plant hormones, mostly small and simple molecules, play crucial roles in plant growth and development, and in responses of plants to environmental cues such as light. With more and more genetics and molecular evidence obtained from the model plant Arabidopsis, several fundamental aspects of leaf morphogenesis including the initiation of leaf primordia, the determination of leaf axes, the regulation of cell division and expansion in leaves have been gradually unveiled. Among these phytohormones, auxin is found to be essential in the regulation of leaf morphogenesis.
文摘Proteins are the workhorse molecules of the cell, which are obtained by folding long chains of amino acids. Since not all shapes are obtained as a folded chain of amino acids, there should be global geometrical constraints on the shape. Moreover, since the function of a protein is largely determined by its shape, constraints on the shape should have some influence on its interaction with other proteins. In this paper, we consider global geometrical constraints on the shape of proteins. Using a mathematical toy model, in which proteins are represented as closed chains of tetrahedrons, we have identified not only global geometrical constraints on the shape of proteins, but also their influence on protein interactions. As an example, we show that a garlic-bulb like structure appears as a result of the constraints. Regarding the influence of global geometrical constraints on interactions, we consider their influence on the structural coupling of two distal sites in allosteric regulation. We then show the inseparable relationship between global geometrical constraints and protein interactions;i.e. they are different sides of the same coin. This finding could be important for the understanding of the basic mechanisms of allosteric regulation of protein functions.
基金supported by the Grants(52373069,52373032,51973027,and 52003044)from the National Natural Science Foundation of China,the National Key Research and Development Program of China(2023YFC3011701)the Fundamental Research Funds for the Central Universities(2232023A-05)+3 种基金International Cooperation Fund of Science and Technology Commission of Shanghai Municipality(21130750100)the Fundamental Research Funds for the Central Universities and Graduate Student Innovation Fund of Donghua University(CUSF-DH-D2022039)Major Scientific and Technological Innovation Projects of Shandong Province(2021CXGC011004,2023CXGC010610)supported by the Chang Jiang Scholars Program and the Innovation Program of Shanghai Municipal Education Commission(2019-01-07-00-03-E00023)to Prof.Xiaohong Qin.
文摘Nanofiber core-spun yarn(NCSY)combines the advantages of traditional fibers and nanofibers to be widely used in smart wearable textiles,biomedical textiles,and functional textiles.Here,for the first time,the forming process of NCSY and its shape regulation mechanism were explored via finite element analysis and response surface analysis method to obtain mathematical model for predicting the various forms of yarn.As proof-of-concept applications,shape-controllable nanofiber core-spun yarns were prepared for thermal–moisture management and solar steam generation,respectively.The as-obtained shape-controllable PAN nanofiber/cotton composite yarns could achieve an interval control of average water transfer velocity in the horizontal(0.17–0.24 cm min^(-1))and vertical(0.24–0.33 cm min^(-1))directions within 30 min due to the arrangement of PAN nanofibers causes microchannels and hydrophilicity,matching the sweat secretion of human bodies under dynamic or static conditions and realizing the purpose of thermal and moisture comfort.Furthermore,PAN nanofiber wrapped CNTs/cotton composite yarn-based(PAN@CNTs-NCSY)evaporator was designed,which shows a fast water evaporation rate of 1.40 kg m^(-2)h^(-1),exceeding in most fabric-based evaporators reported to date.These findings have guiding significance for preparing rich style NCSY according to demand and designing functional and intelligent textiles via adjusting the type of core and shell fibers.
基金supported by the Innovation Program of Shanghai Municipal Education Commission(2023ZKZD05)the National Natural Science Foundation of China(32172043,31971918 and 32170356)+2 种基金the Shanghai Science and Technology Innovation Action Plan Project(22N11900200)the Innovation Program of Chinese Academy of Agricultural Sciencesthe grant from the National Key Research and Development Program of China(2021YFA1300401).
文摘RNA-binding proteins(RBPs)are components of the post-transcriptional regulatory system,but their regulatory effects on complex traits remain unknown.Using an integrated strategy involving map-based cloning,functional characterizations,and transcriptomic and population genomic analyses,we revealed that RBP-K(LOC_Os08g23120),RBP-A(LOC_Os11g41890),and RBP-J(LOC_Os10g33230)encode proteins that form an RBP-A-J-K complex that negatively regulates rice yield-related traits.Examinations of the RBP-A-J-K complex indicated RBP-K functions as a relatively non-specific RBP chaperone that enables RBP-A and RBP-J to function normally.Additionally,RBP-J most likely affects GA pathways,resulting in considerable increases in grain and panicle lengths,but decreases in grain width and thickness.In contrast,RBP-A negatively regulates the expression of genes most likely involved in auxin-regulated pathways controlling cell wall elongation and carbohydrate transport,with substantial effects on the rice grain filling process as well as grain length and weight.Evolutionarily,RBP-K is relatively ancient and highly conserved,whereas RBP-J and RBP-A are more diverse.Thus,the RBP-A-J-K complex may represent a typical functional model for many RBPs and protein complexes that function at transcriptional and post-transcriptional levels in plants and animals for increased functional consistency,efficiency,and versatility,as well as increased evolutionary potential.Our results clearly demonstrate the importance of RBP-mediated post-transcriptional regulation for the diversity of complex traits.Furthermore,rice grain yield and quality may be enhanced by introducing various complete or partial loss-of-function mutations to specific RBP genes using clustered regularly interspaced palindromic repeats(CRISPR)/CRISPR-associated protein 9 technology and by exploiting desirable natural tri-genic allelic combinations at the loci encoding the components of the RBP-A-J-K complex through marker-assisted selection.