China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a...China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a new technology to increase the accuracy of seismic exploration. We briefly discuss point source and receiver technology, analyze the high density spatial sampling in situ method, introduce the symmetric sampling principles presented by Gijs J. O. Vermeer, and discuss high density spatial sampling technology from the point of view of wave field continuity. We emphasize the analysis of the high density spatial sampling characteristics, including the high density first break advantages for investigation of near surface structure, improving static correction precision, the use of dense receiver spacing at short offsets to increase the effective coverage at shallow depth, and the accuracy of reflection imaging. Coherent noise is not aliased and the noise analysis precision and suppression increases as a result. High density spatial sampling enhances wave field continuity and the accuracy of various mathematical transforms, which benefits wave field separation. Finally, we point out that the difficult part of high density spatial sampling technology is the data processing. More research needs to be done on the methods of analyzing and processing huge amounts of seismic data.展开更多
This paper aims to discuss how to effectively suppress intersymbol interference by optimizing the filter design, so as to achieve a distortion-free output effect, and effectively compensate the transmission characteri...This paper aims to discuss how to effectively suppress intersymbol interference by optimizing the filter design, so as to achieve a distortion-free output effect, and effectively compensate the transmission characteristics of the baseband transmission system in a non-ideal channel environment, so as to minimize the impact of intersymbol crosser. The simulation experiment model of digital optimal baseband transmission and the overall structure of the system are designed based on the Matlab simulation platform, and the parameters of each module in the simulation experiment model are set. The working process and performance of the digital optimal baseband transmission system are simulated, and the conditions and performance of the digital optimal baseband transmission system are verified according to the simulation results.展开更多
文摘China's continental deposition basins are characterized by complex geological structures and various reservoir lithologies. Therefore, high precision exploration methods are needed. High density spatial sampling is a new technology to increase the accuracy of seismic exploration. We briefly discuss point source and receiver technology, analyze the high density spatial sampling in situ method, introduce the symmetric sampling principles presented by Gijs J. O. Vermeer, and discuss high density spatial sampling technology from the point of view of wave field continuity. We emphasize the analysis of the high density spatial sampling characteristics, including the high density first break advantages for investigation of near surface structure, improving static correction precision, the use of dense receiver spacing at short offsets to increase the effective coverage at shallow depth, and the accuracy of reflection imaging. Coherent noise is not aliased and the noise analysis precision and suppression increases as a result. High density spatial sampling enhances wave field continuity and the accuracy of various mathematical transforms, which benefits wave field separation. Finally, we point out that the difficult part of high density spatial sampling technology is the data processing. More research needs to be done on the methods of analyzing and processing huge amounts of seismic data.
文摘This paper aims to discuss how to effectively suppress intersymbol interference by optimizing the filter design, so as to achieve a distortion-free output effect, and effectively compensate the transmission characteristics of the baseband transmission system in a non-ideal channel environment, so as to minimize the impact of intersymbol crosser. The simulation experiment model of digital optimal baseband transmission and the overall structure of the system are designed based on the Matlab simulation platform, and the parameters of each module in the simulation experiment model are set. The working process and performance of the digital optimal baseband transmission system are simulated, and the conditions and performance of the digital optimal baseband transmission system are verified according to the simulation results.