期刊文献+
共找到1,820篇文章
< 1 2 91 >
每页显示 20 50 100
SVM-KNN分类器——一种提高SVM分类精度的新方法 被引量:133
1
作者 李蓉 叶世伟 史忠植 《电子学报》 EI CAS CSCD 北大核心 2002年第5期745-748,共4页
本文提出了一种将支持向量机分类和最近邻分类相结合的方法 ,形成了一种新的分类器 .首先对支持向量机进行分析可以看出它作为分类器实际相当于每类只选一个代表点的最近邻分类器 ,同时在对支持向量机分类时出错样本点的分布进行研究的... 本文提出了一种将支持向量机分类和最近邻分类相结合的方法 ,形成了一种新的分类器 .首先对支持向量机进行分析可以看出它作为分类器实际相当于每类只选一个代表点的最近邻分类器 ,同时在对支持向量机分类时出错样本点的分布进行研究的基础上 ,在分类阶段计算待识别样本和最优分类超平面的距离 ,如果距离差大于给定阈值直接应用支持向量机分类 ,否则代入以每类的所有的支持向量作为代表点的K近邻分类 .数值实验证明了使用支持向量机结合最近邻分类的分类器分类比单独使用支持向量机分类具有更高的分类准确率 。 展开更多
关键词 svm-KNN分类器 svm分类精度 支持向量机 最近邻分类 模式识别 人工智能
下载PDF
多输入特征融合的组合支持向量机电力系统暂态稳定评估 被引量:138
2
作者 马骞 杨以涵 +2 位作者 刘文颖 齐郑 郭金智 《中国电机工程学报》 EI CSCD 北大核心 2005年第6期17-23,共7页
利用支持向量机(SVM)方法进行暂态稳定判别时,输入特征的选择是影响最终结果的最重要因素。传统启发式和试探式方法不能从根本上解决输入特征选择的问题。本文利用信息融合思想,在构造的具有不同输入特征的多组子分类器的基础上,对子分... 利用支持向量机(SVM)方法进行暂态稳定判别时,输入特征的选择是影响最终结果的最重要因素。传统启发式和试探式方法不能从根本上解决输入特征选择的问题。本文利用信息融合思想,在构造的具有不同输入特征的多组子分类器的基础上,对子分类器的结果在输出空间再进行信息融合,以提高分类准确率。文中从不同角度启发式的构造了 4,构成四组弱分类器。以这四组弱分类器为子分类器,再构造一个融合 SVM 对几种子分类器的结果以回归方式进行融合,作为最终判别结果。IEEE 39-BUS 和IEEE145-BUS 测试系统上进行的仿真表明,弱分类器的分类性能经过融合得到明显强化,融合后的结果比任何一种子分类器的结果以及一次包含所有输入特征的结果都更准确。该方法为在线快速进行暂态稳定计算提供了一条重要途径。 展开更多
关键词 暂态稳定评估 电力系统 特征融合 支持向量机(svm) 多输入 输入特征 组合 暂态稳定计算 信息融合 分类器 特征选择 测试系统 启发式 构造 准确率 判别 种子
下载PDF
一种SVM增量学习算法α-ISVM 被引量:85
3
作者 萧嵘 王继成 +1 位作者 孙正兴 张福炎 《软件学报》 EI CSCD 北大核心 2001年第12期1818-1824,共7页
基于 SVM(supportvector machine)理论的分类算法 ,由于其完善的理论基础和良好的试验结果 ,目前已逐渐引起国内外研究者的关注 .深入分析了 SVM理论中 SV(support vector,支持向量 )集的特点 ,给出一种简单的SVM增量学习算法 .在此基础... 基于 SVM(supportvector machine)理论的分类算法 ,由于其完善的理论基础和良好的试验结果 ,目前已逐渐引起国内外研究者的关注 .深入分析了 SVM理论中 SV(support vector,支持向量 )集的特点 ,给出一种简单的SVM增量学习算法 .在此基础上 ,进一步提出了一种基于遗忘因子α的 SVM增量学习改进算法α- ISVM.该算法通过在增量学习中逐步积累样本的空间分布知识 ,使得对样本进行有选择地遗忘成为可能 .理论分析和实验结果表明 ,该算法能在保证分类精度的同时 ,有效地提高训练速度并降低存储空间的占用 . 展开更多
关键词 机器学习 svm理论 增量学习算法 α-Isvm
下载PDF
基于RBF核的SVM的模型选择及其应用 被引量:48
4
作者 王鹏 朱小燕 《计算机工程与应用》 CSCD 北大核心 2003年第24期72-73,共2页
使用RBF核的SVM(支持向量机)被广泛应用于模式识别中。此类SVM的模型选择取决于两个参数,其一是惩罚因子C,其二是核参数σ2。该文使用了网格搜索和双线性搜索两种方法进行参数选择,并将两者的优点综合,应用于脱机手写体英文字符识别。... 使用RBF核的SVM(支持向量机)被广泛应用于模式识别中。此类SVM的模型选择取决于两个参数,其一是惩罚因子C,其二是核参数σ2。该文使用了网格搜索和双线性搜索两种方法进行参数选择,并将两者的优点综合,应用于脱机手写体英文字符识别。实验在NIST数据集上进行了验证,对搜索效率和推广识别率进行了比较。实验结果还表明使用最优参数的SVM在识别率上比使用ANN(人工神经元网络)的分类器有较大提高。 展开更多
关键词 svm RBF核 模型选择 ANN 字符识别
下载PDF
实现影响因素多源异构融合的短期负荷预测支持向量机算法 被引量:93
5
作者 吴倩红 高军 +3 位作者 侯广松 韩蓓 汪可友 李国杰 《电力系统自动化》 EI CSCD 北大核心 2016年第15期67-72,92,共7页
针对智能电网大数据环境下,导致电力系统负荷波动的诸多因素存在多源异构性的问题,利用多核函数来对其多源异构特性进行差异化处理和融合,能够描述影响因素的内在分布特性并应对其变化,提高负荷预测精度。选取历史负荷、气温、气压、相... 针对智能电网大数据环境下,导致电力系统负荷波动的诸多因素存在多源异构性的问题,利用多核函数来对其多源异构特性进行差异化处理和融合,能够描述影响因素的内在分布特性并应对其变化,提高负荷预测精度。选取历史负荷、气温、气压、相对湿度、降雨量、风向、风速、节假日及电价9个属性作为多源异构影响因素,利用样本特征分布法、单变量法及核矩阵秩空间差异法来选择多核函数的构成,采用双层多核学习算法,建立了并行化多核支持向量机(SVM)负荷预测算法流程,并在Hadoop集群上进行了仿真验证。仿真结果表明,多核SVM比单核SVM预测平均相对误差小,双层多核学习、基于lp范数的多核SVM模型预测精度最高。因此,多核SVM能有效处理负荷预测中的多源异构数据,经并行化处理后,能提高负荷预测的速度与精度。 展开更多
关键词 大数据 多源异构特性 支持向量机(svm) 负荷预测 并行化
下载PDF
基于SVM的软测量建模 被引量:43
6
作者 冯瑞 张浩然 邵惠鹤 《信息与控制》 CSCD 北大核心 2002年第6期567-571,共5页
支持向量机 (Support Vector Machines)是一种基于统计学习理论的新型学习机 ,本文提出用支持向量机建立软测量模型 .理论分析和仿真研究表明 ,该方法学习速度快、跟踪性能好、泛化能力强、对样本的依赖程度低 ,比基于
关键词 svm 软测量 建模 支持向量机 RBF神经网络 工业过程控制 过程变量
下载PDF
基于SVM理论的大坝安全预警模型研究 被引量:79
7
作者 苏怀智 温志萍 吴中如 《应用基础与工程科学学报》 EI CSCD 2009年第1期40-48,共9页
大坝安全预警模型可以理解为根据特定的映射关系由影响因素域到大坝性态效应量域的计算求解问题.对于多因素综合影响下的大坝系统,这种映射关系一般为非线性的.从机器学习的角度,本文应用粗集理论和SVM理论,研究了对上述关系的拟合.首先... 大坝安全预警模型可以理解为根据特定的映射关系由影响因素域到大坝性态效应量域的计算求解问题.对于多因素综合影响下的大坝系统,这种映射关系一般为非线性的.从机器学习的角度,本文应用粗集理论和SVM理论,研究了对上述关系的拟合.首先,利用粗集理论智能数据分析方法,对大坝安全监测信息进行预处理,抽取关键成分作为映射关系的输入,从而确定映射关系的初始拓扑结构.在此基础上,应用最小二乘支持向量机算法,以训练误差作为优化问题的约束条件,以置信范围值最小化作为优化目标,从大坝安全原型观测数据中学习归纳出大坝系统运行规律,从而实现对大坝安全预警模型的构建.实例分析表明,该模型能够有效的模拟和预测大坝工作性态与主要影响因素的关系. 展开更多
关键词 大坝安全 预警模型 机器学习 svm理论
下载PDF
基于SVM的中文组块分析 被引量:50
8
作者 李珩 朱靖波 姚天顺 《中文信息学报》 CSCD 北大核心 2004年第2期1-7,共7页
基于SVM(supportvectormachine)理论的分类算法 ,由于其完善的理论基础和良好的实验结果 ,目前已逐渐引起国内外研究者的关注。和其他分类算法相比 ,基于结构风险最小化原则的SVM在小样本模式识别中表现较好的泛化能力。文本组块分析作... 基于SVM(supportvectormachine)理论的分类算法 ,由于其完善的理论基础和良好的实验结果 ,目前已逐渐引起国内外研究者的关注。和其他分类算法相比 ,基于结构风险最小化原则的SVM在小样本模式识别中表现较好的泛化能力。文本组块分析作为句法分析的预处理阶段 ,通过将文本划分成一组互不重叠的片断 ,来达到降低句法分析的难度。本文将中文组块识别问题看成分类问题 ,并利用SVM加以解决。实验结果证明 ,SVM算法在汉语组块识别方面是有效的 ,在哈尔滨工业大学树库语料测试的结果是F =88 6 7%,并且特别适用于有限的汉语带标信息的情况。 展开更多
关键词 计算机应用 中文信息处理 支持向量机 结构风险最小化 文本组块 svm 分类算法
下载PDF
基于变分模态分解和SVM的滚动轴承故障诊断 被引量:71
9
作者 王新 闫文源 《振动与冲击》 EI CSCD 北大核心 2017年第18期252-256,共5页
针对滚动轴承振动信号的非平稳特征和现实中难以获得大量故障样本的实际情况,提出了基于变分模态分解(Variational mode decomposition,VMD)与支持向量机(Support vector machine,SVM)相结合的滚动轴承故障诊断方法。该方法融合了变分... 针对滚动轴承振动信号的非平稳特征和现实中难以获得大量故障样本的实际情况,提出了基于变分模态分解(Variational mode decomposition,VMD)与支持向量机(Support vector machine,SVM)相结合的滚动轴承故障诊断方法。该方法融合了变分模态分解和支持向量机的优势,通过变分模态分解将滚动轴承振动信号分解成若干个本征模态函数分量,轴承发生不同故障时,不同本征模态函数内的频带能量会发生变化,从包含有主要故障信息的模态分量中提取能量特征作为SVM的输入,判断轴承的工作状态和故障类型。试验结果表明,该方法在少量样本情况下仍能有效地对轴承的工作状态和故障类型进行分类。 展开更多
关键词 变分模态分解 svm 滚动轴承 故障诊断
下载PDF
基于支持向量机和遗传算法的变压器故障诊断 被引量:71
10
作者 吐松江·卡日 高文胜 +3 位作者 张紫薇 莫文雄 王红斌 崔屹平 《清华大学学报(自然科学版)》 EI CAS CSCD 北大核心 2018年第7期623-629,共7页
为了提高变压器故障诊断准确率,该文提出了一种基于支持向量机(support vector machine,SVM)和遗传算法(genetic algorithm,GA)的电力变压器故障诊断方法。基于5种常用油中溶解气体分析方法的20种不同输入建立初始特征集合,采用二... 为了提高变压器故障诊断准确率,该文提出了一种基于支持向量机(support vector machine,SVM)和遗传算法(genetic algorithm,GA)的电力变压器故障诊断方法。基于5种常用油中溶解气体分析方法的20种不同输入建立初始特征集合,采用二进制方式将支持向量机惩罚因子、核参数及特征子集编码至遗传算法染色体,建立基于5折交叉验证正确率的适应度函数,联合优化最优特征子集和支持向量机参数组合。然后依据最优特征子集和参数组合训练诊断模型,并利用测试集和故障实例验证诊断性能。实例分析结果表明:该方法能准确、有效地诊断变压器故障,比基于传统特征子集的支持向量机-遗传算法模型、IEC三比值法、反向传播神经网络和朴素Bayes等方法具有更高的诊断准确率。 展开更多
关键词 故障诊断 油中溶解气分析 支持向量机(svm) 遗传算法(GA)
原文传递
结合Gabor特征与Adaboost的人脸表情识别 被引量:48
11
作者 朱健翔 苏光大 李迎春 《光电子.激光》 EI CAS CSCD 北大核心 2006年第8期993-998,共6页
通过提取人脸图像的Gabor特征,结合Adaboost,进行人脸表情识别(FER)。针对Gabor特征维数高、冗余大的特点,引入Adaboost算法进行特征选择降低特征向量的维数。然后再以支持向量机(SVM)和最近邻分类法相结合组成分类器进行分类。该方法... 通过提取人脸图像的Gabor特征,结合Adaboost,进行人脸表情识别(FER)。针对Gabor特征维数高、冗余大的特点,引入Adaboost算法进行特征选择降低特征向量的维数。然后再以支持向量机(SVM)和最近邻分类法相结合组成分类器进行分类。该方法综合运用了Gabor特征对于人脸表情的良好表征能力、Adaboost算法的强大特征选择能力以及SVM在处理少样本、高维数问题中的优势。在JAFFE库上进行测试的结果验证了该法的有效性。从Adaboost所选择的特征集可知,在眼和嘴区域提取的特征,对于FER是最为重要的。 展开更多
关键词 人脸表情识别(FER) GABOR滤波器 ADABOOST 特征选择 支持向量机(svm)
原文传递
采用PCA/ICA特征和SVM分类的人脸识别 被引量:30
12
作者 王宏漫 欧宗瑛 《计算机辅助设计与图形学学报》 EI CSCD 北大核心 2003年第4期416-420,431,共6页
人脸识别过程中 ,首先在主成分分析基础上进一步做独立成分分析 ,来提取更加有利于分类的面部特征的主要独立成分 ;然后采用一种分阶段淘汰的支持向量机分类机制进行识别 该方法扩展了支持向量机处理多类问题的能力 ,它基于 1 1差别策... 人脸识别过程中 ,首先在主成分分析基础上进一步做独立成分分析 ,来提取更加有利于分类的面部特征的主要独立成分 ;然后采用一种分阶段淘汰的支持向量机分类机制进行识别 该方法扩展了支持向量机处理多类问题的能力 ,它基于 1 1差别策略 ,根据各判别函数VC置信范围的差异进行排序 ,同时利用判别函数间的冗余来降低识别误差 对两组人脸图像库的测试结果表明 。 展开更多
关键词 人脸识别 独立成分分析 人脸图像库 svm 支持向量机 模式识别 PCA/ICA特征
下载PDF
基于深度学习特征提取和WOA-SVM状态识别的轴承故障诊断 被引量:59
13
作者 赵春华 胡恒星 +2 位作者 陈保家 张毅娜 肖嘉伟 《振动与冲击》 EI CSCD 北大核心 2019年第10期31-37,48,共8页
针对滚动轴承故障诊断问题,利用深度学习神经网络、鲸鱼优化算法(WOA)和支持向量机(SVM)等技术,提出了一种基于深度学习特征提取和WOA-SVM状态识别相结合的故障诊断模型。先通过深度学习自适应提取故障频谱特征,并将其与数理统计方法提... 针对滚动轴承故障诊断问题,利用深度学习神经网络、鲸鱼优化算法(WOA)和支持向量机(SVM)等技术,提出了一种基于深度学习特征提取和WOA-SVM状态识别相结合的故障诊断模型。先通过深度学习自适应提取故障频谱特征,并将其与数理统计方法提取的时域特征相融合,再通过WOA-SVM对融合后的联合特征进行故障诊断。该模型在对滚动轴承试验台的故障诊断中实现了不同工况下多种故障类型的可靠识别,并且在一定程度上提高了故障分类的准确性。为了验证WOA-SVM在深度学习提取特征的轴承故障识别中的可行性和有效性,对比了粒子群支持向量机和遗传支持向量机,结果表明WOA-SVM具有较高的收敛精度和收敛速度。 展开更多
关键词 鲸鱼优化算法(WOA) 支持向量机(svm) 轴承故障 深度学习
下载PDF
支持向量机(SVM)在傅里叶变换近红外光谱分析中的应用研究 被引量:47
14
作者 张录达 苏时光 +2 位作者 王来生 李军会 杨丽明 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2005年第1期33-35,共3页
支持向量机(SVM)用于两类问题的识别研究,它是统计学习理论中最年轻的分支,所建分析模型有严格的数学基础。同时介绍了SVM学习的基本原理和方法,并将该方法引入化学计量学,以103个中药大黄样品为实验材料,通过SVM近红外光谱法建立了大... 支持向量机(SVM)用于两类问题的识别研究,它是统计学习理论中最年轻的分支,所建分析模型有严格的数学基础。同时介绍了SVM学习的基本原理和方法,并将该方法引入化学计量学,以103个中药大黄样品为实验材料,通过SVM近红外光谱法建立了大黄样品真伪识别模型。对学习集中33个样品模型识别准确率为100%;对70个预测样品的识别准确率为9677%,为中药大黄的快速识别提供了参考。研究结果表明了SVM近红外光谱法建立生物样品识别模型的可行性。通过旨在介绍SVM学习方法的基本思想,以引起化学计量学工作者的进一步关注。 展开更多
关键词 大黄 中药 年轻 研究结果 准确率 样品 近红外光谱法 支持向量机(svm) 统计学习理论 识别
下载PDF
改进的XGBoost模型在股票预测中的应用 被引量:55
15
作者 王燕 郭元凯 《计算机工程与应用》 CSCD 北大核心 2019年第20期202-207,共6页
随着时代的不断进步,人民生活水平日益提高。在解决温饱问题之余,有了可供投资的余财。越来越多的人将目光转向股市投资,为股市发展提供了资金条件。然而在纷繁复杂的股票市场,如何寻找最优股成为亟待解决的问题。这不仅是投资者单方面... 随着时代的不断进步,人民生活水平日益提高。在解决温饱问题之余,有了可供投资的余财。越来越多的人将目光转向股市投资,为股市发展提供了资金条件。然而在纷繁复杂的股票市场,如何寻找最优股成为亟待解决的问题。这不仅是投资者单方面的困惑,也是股票预测领域中学者们所关心的重点。通过网格搜索算法对XGBoost 模型进行参数优化构建GS-XGBoost 的金融预测模型,并将该模型运用于股票短期预测中。分别以中国平安、中国建筑、中国中车、科大讯飞和三一重工2005 年4 月至2018 年12 月28 日的每日收盘价作为实验数据。通过实验对比,相较于XGBoost 原模型、GBDT模型以及SVM模型,GS-XGBoost 模型在MSE、RMSE与MAE三个评价指标上都表现出较好的预测结果。从而验证,GS-XGBoost 金融预测模型在股票短期预测中具有更好的拟合性能。 展开更多
关键词 XGBoost 网格搜索 梯度增强决策树(GBDT) 支持向量机(svm) 股价预测
下载PDF
一种新的机器学习算法:Support Vector Machines 被引量:30
16
作者 陶卿 姚穗 +1 位作者 范劲松 方廷健 《模式识别与人工智能》 EI CSCD 北大核心 2000年第3期285-290,共6页
SVM是由Vapnik及其领导的AT&T Bell实验室研究小组提出的一种新的非常有发展前景的机器学习算法。本文通过它与神经网络学习算法的比较,说明了SVM具有较强的理论依据和较好的泛化性能。本文是SVM的发展综述,重点介绍了SVM的理论依... SVM是由Vapnik及其领导的AT&T Bell实验室研究小组提出的一种新的非常有发展前景的机器学习算法。本文通过它与神经网络学习算法的比较,说明了SVM具有较强的理论依据和较好的泛化性能。本文是SVM的发展综述,重点介绍了SVM的理论依据和一些值得研究的问题。 展开更多
关键词 机器学习 神经网络 VC理论 svm 学习算法
原文传递
基于ICA与SVM算法的高光谱遥感影像分类 被引量:50
17
作者 梁亮 杨敏华 李英芳 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2010年第10期2724-2728,共5页
提出了一种利用独立分量分析(ICA)与支撑向量机(SVM)算法进行高光谱遥感影像分类的新方法。采用ICA算法对高光谱遥感影像(PHI传感器获取,80波段)进行了特征提取,并以提取出的影像数据(光谱维数为20)构建SVM分类器。对SVM算法进行核函数... 提出了一种利用独立分量分析(ICA)与支撑向量机(SVM)算法进行高光谱遥感影像分类的新方法。采用ICA算法对高光谱遥感影像(PHI传感器获取,80波段)进行了特征提取,并以提取出的影像数据(光谱维数为20)构建SVM分类器。对SVM算法进行核函数删选与参数寻优后,发现采用RBF核的SVM算法(C=103,γ=0.05)分类结果最佳,分类精度与Kappa系数分别达94.5127%与0.935 1,优于BP-神经网络(分类精度39.4758%,Kappa系数0.315 5)、波谱角分类(分类精度80.282 6,Kappa系数0.770 9)、最小距离分类(分类精度85.462 7%,Kappa系数0.827 7)以及最大似然分类(分类精度86.015 6%,Kappa系数0.835 1)4种方法。针对分类结果常出现的"椒盐"现象,利用形态学算子对SVM(RBF核)分类结果进行了类别集群处理,将分类精度与Kappa系数分别提高至94.758 4%与0.938 0,获得了更接近实况的分类图像。结果表明:ICA结合SVM算法准确率高,是高光谱遥感影像分类的优选方法,且类别集群是优化影像分类的有效方法之一。 展开更多
关键词 高光谱 分类 支撑向量机(svm) 独立分量分析(ICA) 类别集群
下载PDF
基于人工蜂群算法的支持向量机参数优化及应用 被引量:52
18
作者 于明 艾月乔 《光电子.激光》 EI CAS CSCD 北大核心 2012年第2期374-378,共5页
为了解决常用的支持向量机(SVM)参数优化方法在寻优过程不同程度的陷入局部最优解的问题,提出一种基于人工蜂群(ABC)算法的SVM参数优化方法。将SVM的惩罚因子和核函数参数作为食物源位置,分类正确率作为适应度,利用ABC算法寻找适应度最... 为了解决常用的支持向量机(SVM)参数优化方法在寻优过程不同程度的陷入局部最优解的问题,提出一种基于人工蜂群(ABC)算法的SVM参数优化方法。将SVM的惩罚因子和核函数参数作为食物源位置,分类正确率作为适应度,利用ABC算法寻找适应度最高的食物源位置。利用4个标准数据集,将其与遗传(GA)算法、蚁群(ACO)算法、标准粒子群(PSO)算法优化的SVM进行性能比较,结果表明,本文方法能克服局部最优解,获得更高的分类正确率,并在小数目分类问题上有效降低运行时间。将本文方法运用到计算机笔迹鉴别,对提取的笔迹特征进行分类,与GA算法、ACO算法、PSO算法优化的SVM相比,得到了更高的分类正确率。 展开更多
关键词 人工蜂群(ABC)算法 支持向量机(svm) 参数优化 优化算法
原文传递
基于EMD样本熵-LLTSA的故障特征提取方法 被引量:52
19
作者 向丹 葛爽 《航空动力学报》 EI CAS CSCD 北大核心 2014年第7期1535-1542,共8页
针对振动信号的非线性、非平稳性以及微弱故障特征难以提取的问题,提出了一种基于经验模态分解(EMD)、样本熵和流形学习的故障特征提取方法.该方法将EMD、样本熵和流形学习相结合.首先,利用EMD的自适应多分辨率的特点计算分解得到的IMF... 针对振动信号的非线性、非平稳性以及微弱故障特征难以提取的问题,提出了一种基于经验模态分解(EMD)、样本熵和流形学习的故障特征提取方法.该方法将EMD、样本熵和流形学习相结合.首先,利用EMD的自适应多分辨率的特点计算分解得到的IMF(固有模态函数)信号的样本熵,初步提取滚动轴承状态特征值;然后利用流形学习方法对初步的提取的滚动轴承状态特征进行进一步的提取;最后利用支持向量机(SVM)对该特征提取方法进行分类评估,并将该方法运用在滚动轴承故障诊断实验中,实验证明该特征提取方法与基于小波包样本熵的故障诊断方法相比具有很好的聚类性能,且对于SVM的分类结果可达100%,在降低了特征数据的复杂度的同时,增强了故障模式识别的分类性能,具有一定的优越性. 展开更多
关键词 经验模态分解 样本熵 流形学习 特征提取 支持向量机
原文传递
基于支持向量机的风速预测模型研究 被引量:48
20
作者 张华 曾杰 《太阳能学报》 EI CAS CSCD 北大核心 2010年第7期928-932,共5页
由于风速的随机性很大,风速大小的影响因素较多,风速预测的准确度不高。针对这种现象,该文基于支持向量机(SVM)理论,结合风速资料,建立支持向量机(SVM)预测模型来进行短期的风速预测,由支持向量机预测模型得到的预测风速与实际风速基本... 由于风速的随机性很大,风速大小的影响因素较多,风速预测的准确度不高。针对这种现象,该文基于支持向量机(SVM)理论,结合风速资料,建立支持向量机(SVM)预测模型来进行短期的风速预测,由支持向量机预测模型得到的预测风速与实际风速基本一致,预测效果较理想,预测的平均绝对百分比误差为10.07%,验证了支持向量机预测模型在风速短期预测中的可行性。 展开更多
关键词 支持向量机(svm) 风速预测 短期预测
下载PDF
上一页 1 2 91 下一页 到第
使用帮助 返回顶部