锂离子电池剩余使用寿命(remaining useful life,RUL)的准确预测对于提高电池使用寿命、降低异常事故的概率,起着至关重要的作用。本文结合堆叠噪声自编码器(stacked denoising auto encoder,SDAE)和变压器(transformer)的优势,提出了...锂离子电池剩余使用寿命(remaining useful life,RUL)的准确预测对于提高电池使用寿命、降低异常事故的概率,起着至关重要的作用。本文结合堆叠噪声自编码器(stacked denoising auto encoder,SDAE)和变压器(transformer)的优势,提出了一种结合高效通道注意力(efficient channelattention,ECA)的SDAETransformer-ECA的锂离子电池RUL预测网络。首先,针对电池在使用过程中存在的容量再生现象和数据集采集误差等噪声污染,利用SDAE对输入数据进行重构去噪、提取特征。然后,通过Transformer网络对重构数据进行序列信息的捕获。最后,结合ECA网络对捕获信息进行跨通道整合和交互,从而实现锂离子电池的RUL的预测。本文先基于美国马里兰大学先进生命周期工程中心(Center for Advanced Life Cycle Engineering,CALCE)提供的电池容量数据集进行实验验证,实验证明本文模型的各项误差都较低,具有较高的准确性,且与次优算法Bi-LSTM相比,平均RE相对降低了62.67%,平均MAE相对降低了40.68%,平均RMSE相对降低了34.33%。再使用美国航空航天局(National Aeronautics and Space Administration,NASA)提供的B0007号电池容量数据集进行泛化性验证,实验得到的RE、MAE和RMSE结果分别是1.98%、3.12%和4.16%,与RNN、LSTM、GRU和Bi-LSTM等现有算法相比,本文模型预测准确性更高,证明了该模型的泛化性。展开更多
针对施工现场环境复杂,难以高效管理的问题.提出了基于工地场景的深度学习目标跟踪算法,辅助施工顺利进行.根据工地现场目标的连续性,构建增强群跟踪器,提升目标成功跟踪的概率.然后从滑动窗口、Stacked Denoising Auto Encoder(SDAE)和...针对施工现场环境复杂,难以高效管理的问题.提出了基于工地场景的深度学习目标跟踪算法,辅助施工顺利进行.根据工地现场目标的连续性,构建增强群跟踪器,提升目标成功跟踪的概率.然后从滑动窗口、Stacked Denoising Auto Encoder(SDAE)和Support Vector Machine(SVM)三方面组建深度检测器.在滑动窗口方面:从梯度角度建立模型实现窗口自适应.在SDAE算法方面:构建反向算法微调网络参数.优化SVM算法降低跟踪时目标漂移和跟踪失败的概率,最终实现目标高精度跟踪.通过实验表明本文提出的算法可有效对目标进行跟踪,实现动态管理.展开更多
为了解决传统方法因数据不平衡及特征冗余而导致检测准确率不高的问题,提出了一种结合SMOTE(synthetic minority over-sampling technique)算法采样的SDAE-LSTM(stacked deep auto-encoder-long short term memory)入侵检测模型。首先,...为了解决传统方法因数据不平衡及特征冗余而导致检测准确率不高的问题,提出了一种结合SMOTE(synthetic minority over-sampling technique)算法采样的SDAE-LSTM(stacked deep auto-encoder-long short term memory)入侵检测模型。首先,针对数据不平衡问题,采用SMOTE算法在少数类样本点之间随机插入样本增加其数量,达到类间平衡的目的。其次,针对特征冗余问题,利用堆叠式深度自编码器(stacked deep auto-encoder,SDAE)进行降维,实现数据的深度特征提取。最后,基于长短期记忆(long short term memory,LSTM)神经网络,精准捕获网络入侵特征,准确地实现入侵检测。通过在UNSW-NB15数据集上的大量实验,有效证明了本文模型与其他模型相比有着更好的入侵检测效果。展开更多
文摘锂离子电池剩余使用寿命(remaining useful life,RUL)的准确预测对于提高电池使用寿命、降低异常事故的概率,起着至关重要的作用。本文结合堆叠噪声自编码器(stacked denoising auto encoder,SDAE)和变压器(transformer)的优势,提出了一种结合高效通道注意力(efficient channelattention,ECA)的SDAETransformer-ECA的锂离子电池RUL预测网络。首先,针对电池在使用过程中存在的容量再生现象和数据集采集误差等噪声污染,利用SDAE对输入数据进行重构去噪、提取特征。然后,通过Transformer网络对重构数据进行序列信息的捕获。最后,结合ECA网络对捕获信息进行跨通道整合和交互,从而实现锂离子电池的RUL的预测。本文先基于美国马里兰大学先进生命周期工程中心(Center for Advanced Life Cycle Engineering,CALCE)提供的电池容量数据集进行实验验证,实验证明本文模型的各项误差都较低,具有较高的准确性,且与次优算法Bi-LSTM相比,平均RE相对降低了62.67%,平均MAE相对降低了40.68%,平均RMSE相对降低了34.33%。再使用美国航空航天局(National Aeronautics and Space Administration,NASA)提供的B0007号电池容量数据集进行泛化性验证,实验得到的RE、MAE和RMSE结果分别是1.98%、3.12%和4.16%,与RNN、LSTM、GRU和Bi-LSTM等现有算法相比,本文模型预测准确性更高,证明了该模型的泛化性。
文摘为了解决传统方法因数据不平衡及特征冗余而导致检测准确率不高的问题,提出了一种结合SMOTE(synthetic minority over-sampling technique)算法采样的SDAE-LSTM(stacked deep auto-encoder-long short term memory)入侵检测模型。首先,针对数据不平衡问题,采用SMOTE算法在少数类样本点之间随机插入样本增加其数量,达到类间平衡的目的。其次,针对特征冗余问题,利用堆叠式深度自编码器(stacked deep auto-encoder,SDAE)进行降维,实现数据的深度特征提取。最后,基于长短期记忆(long short term memory,LSTM)神经网络,精准捕获网络入侵特征,准确地实现入侵检测。通过在UNSW-NB15数据集上的大量实验,有效证明了本文模型与其他模型相比有着更好的入侵检测效果。