The objective of this research was to show a way to conduct rejuvenation of aged polymer modified asphalt binder(PMB) successfully.To fully evaluate and understand the rejuvenation of aged PMB,the Penetration grade ...The objective of this research was to show a way to conduct rejuvenation of aged polymer modified asphalt binder(PMB) successfully.To fully evaluate and understand the rejuvenation of aged PMB,the Penetration grade tests including penetration,soften point,ductility and elastic recovery and SuperpaveTM PG grade tests including DSR,BBR and DDT were conducted.The rejuvenation effect of aged PMB by utilizing a fluid recycling agent in common use for binder rejuvenation was evaluated.And then the compound rejuvenation effect of aged PMB by utilizing the recycling agent with a new modifying additive for binder modification was evaluated.The experimental results indicated that the recycling agent in common use currently does not apply to polymer modified asphalt binder rejuvenation.But the recycling agent together with the modifying additive can restore the characteristics of aged polymer modified binder very well.Therefore,compound rejuvenation of polymer modified asphalt binder is recommended.展开更多
Microbiologically⁃induced calcite⁃precipitation(MICP)has been increasingly studied in structural repair including self⁃healing and external applications.Among various MICP pathways,enzymatic urea hydrolysis is suggest...Microbiologically⁃induced calcite⁃precipitation(MICP)has been increasingly studied in structural repair including self⁃healing and external applications.Among various MICP pathways,enzymatic urea hydrolysis is suggested to be applied as external repair instead of self⁃healing.This study comprehensively characterised the enzymatic urea hydrolysis pathway in physical,impermeable,and mechanical rejuvenation of concrete cracks.The visual quality of repaired structures was presented,and the importance of humidity in the remediation of cracks was demonstrated.Moreover,this study investigated the differences in the effectiveness of repair between premixing bacteria with urea and without any premixing.With premixing,there was a concern that the accelerated reactions would precipitate calcite in the shallow spaces of the cracks and impede deeper healing.However,the observed results indicated that neither physical nor impermeable rejuvenation of concrete cracks repair would be detrimentally affected.The results obtained from this study will allow further development in commercialisation since the effectiveness of repair has been confirmed with an improvement in its efficiency.展开更多
基金Funded in Part by the National Natural Science Foundation of China (No. 50878054)
文摘The objective of this research was to show a way to conduct rejuvenation of aged polymer modified asphalt binder(PMB) successfully.To fully evaluate and understand the rejuvenation of aged PMB,the Penetration grade tests including penetration,soften point,ductility and elastic recovery and SuperpaveTM PG grade tests including DSR,BBR and DDT were conducted.The rejuvenation effect of aged PMB by utilizing a fluid recycling agent in common use for binder rejuvenation was evaluated.And then the compound rejuvenation effect of aged PMB by utilizing the recycling agent with a new modifying additive for binder modification was evaluated.The experimental results indicated that the recycling agent in common use currently does not apply to polymer modified asphalt binder rejuvenation.But the recycling agent together with the modifying additive can restore the characteristics of aged polymer modified binder very well.Therefore,compound rejuvenation of polymer modified asphalt binder is recommended.
基金Sponsored by the National Natural Science Foundation of China(Grant No.51278157).
文摘Microbiologically⁃induced calcite⁃precipitation(MICP)has been increasingly studied in structural repair including self⁃healing and external applications.Among various MICP pathways,enzymatic urea hydrolysis is suggested to be applied as external repair instead of self⁃healing.This study comprehensively characterised the enzymatic urea hydrolysis pathway in physical,impermeable,and mechanical rejuvenation of concrete cracks.The visual quality of repaired structures was presented,and the importance of humidity in the remediation of cracks was demonstrated.Moreover,this study investigated the differences in the effectiveness of repair between premixing bacteria with urea and without any premixing.With premixing,there was a concern that the accelerated reactions would precipitate calcite in the shallow spaces of the cracks and impede deeper healing.However,the observed results indicated that neither physical nor impermeable rejuvenation of concrete cracks repair would be detrimentally affected.The results obtained from this study will allow further development in commercialisation since the effectiveness of repair has been confirmed with an improvement in its efficiency.