We consider the problem of finding map regions that best match query keywords. This region search problem can be applied in many practical scenarios such as shopping recommendation, searching for tourist attractions, ...We consider the problem of finding map regions that best match query keywords. This region search problem can be applied in many practical scenarios such as shopping recommendation, searching for tourist attractions, and collision region detection for wireless sensor networks. While conventional map search retrieves isolate locations in a map, users frequently attempt to find regions of interest instead, e.g., detecting regions having too many wireless sensors to avoid collision, or finding shopping areas featuring various merchandise or tourist attractions of different styles. Finding regions of interest in a map is a non-trivial problem and retrieving regions of arbitrary shapes poses particular challenges. In this paper, we present a novel region search algorithm, dense region search(DRS), and its extensions, to find regions of interest by estimating the density of locations containing the query keywords in the region. Experiments on both synthetic and real-world datasets demonstrate the effectiveness of our algorithm.展开更多
Personalized recommender systems have been widely deployed in various scenarios to enhance user experience in response to the challenge of information explosion.Especially,personalized recommendation models based on g...Personalized recommender systems have been widely deployed in various scenarios to enhance user experience in response to the challenge of information explosion.Especially,personalized recommendation models based on graph structure have advanced greatly in predicting user preferences.However,geographical region entities that reflect the geographical context of the items is not being utilized in previous works,leaving room for the improvement of personalized recommendation.This study proposes a region-aware neural graph collaborative filtering(RA-NGCF)model,which introduces the geographical regions for improving the prediction of user preference.The approach first characterizes the relationships between items and users with a user-item-region graph.And,a neural network model for the region-aware graph is derived to capture the higher-order interaction among users,items,and regions.Finally,the model fuses region and item vectors to infer user preferences.Experiments on real-world dataset results show that introducing region entities improves the accuracy of personalized recommendations.This study provides a new approach for optimizing personalized recommendation as well as a methodological reference for facilitating geographical regions for optimizing spatial applications.展开更多
With the rapid development of data-driven intelligent transportation systems,an efficient route recommendation method for taxis has become a hot topic in smart cities.We present an effective taxi route recommendation ...With the rapid development of data-driven intelligent transportation systems,an efficient route recommendation method for taxis has become a hot topic in smart cities.We present an effective taxi route recommendation approach(called APFD)based on the artificial potential field(APF)method and Dijkstra method with mobile trajectory big data.Specifically,to improve the efficiency of route recommendation,we propose a region extraction method that searches for a region including the optimal route through the origin and destination coordinates.Then,based on the APF method,we put forward an effective approach for removing redundant nodes.Finally,we employ the Dijkstra method to determine the optimal route recommendation.In particular,the APFD approach is applied to a simulation map and the real-world road network on the Fourth Ring Road in Beijing.On the map,we randomly select 20 pairs of origin and destination coordinates and use APFD with the ant colony(AC)algorithm,greedy algorithm(A*),APF,rapid-exploration random tree(RRT),non-dominated sorting genetic algorithm-II(NSGA-II),particle swarm optimization(PSO),and Dijkstra for the shortest route recommendation.Compared with AC,A*,APF,RRT,NSGA-II,and PSO,concerning shortest route planning,APFD improves route planning capability by 1.45%–39.56%,4.64%–54.75%,8.59%–37.25%,5.06%–45.34%,0.94%–20.40%,and 2.43%–38.31%,respectively.Compared with Dijkstra,the performance of APFD is improved by 1.03–27.75 times in terms of the execution efficiency.In addition,in the real-world road network,on the Fourth Ring Road in Beijing,the ability of APFD to recommend the shortest route is better than those of AC,A*,APF,RRT,NSGA-II,and PSO,and the execution efficiency of APFD is higher than that of the Dijkstra method.展开更多
输入图像尺度不一导致在复杂背景上基于深度学习的目标检测算法存在检测速度慢和检测精度低的问题。为了解决这些问题,基于更快区域卷积网络,提出一种包含区域网络、特征提取和区域分类3个模块的目标检测算法。首先通过感兴趣区域提取网...输入图像尺度不一导致在复杂背景上基于深度学习的目标检测算法存在检测速度慢和检测精度低的问题。为了解决这些问题,基于更快区域卷积网络,提出一种包含区域网络、特征提取和区域分类3个模块的目标检测算法。首先通过感兴趣区域提取网络RPNS和RPNB,得到带有对象得分的矩形目标推荐;再利用多尺度和多高宽比的锚点框计算并提取每个推荐的局部特征;最后用剔除重叠度(Degree of overlap,DOL)设置阈值进行分类和回归。实验结果表明,该算法在多尺度目标的图像上有更好的鲁棒性,平均准确度均值(mean Average Precision,mAP)达75.4%,多尺度目标检测性能有所提升。展开更多
基金supported by the Zhejiang Provincial Natural Science Foundation of China(No.LZ13F020001)the National Natural Science Foundation of China(Nos.61173185 and 61173186)+1 种基金the National Key Technology R&D Program of China(No.2012BAI34B01)the Hangzhou S&T Development Plan(No.20150834M22)
文摘We consider the problem of finding map regions that best match query keywords. This region search problem can be applied in many practical scenarios such as shopping recommendation, searching for tourist attractions, and collision region detection for wireless sensor networks. While conventional map search retrieves isolate locations in a map, users frequently attempt to find regions of interest instead, e.g., detecting regions having too many wireless sensors to avoid collision, or finding shopping areas featuring various merchandise or tourist attractions of different styles. Finding regions of interest in a map is a non-trivial problem and retrieving regions of arbitrary shapes poses particular challenges. In this paper, we present a novel region search algorithm, dense region search(DRS), and its extensions, to find regions of interest by estimating the density of locations containing the query keywords in the region. Experiments on both synthetic and real-world datasets demonstrate the effectiveness of our algorithm.
基金supported in part by the National Natural Science Foundation of China(NSFC)[grant number 42071382,61972365].
文摘Personalized recommender systems have been widely deployed in various scenarios to enhance user experience in response to the challenge of information explosion.Especially,personalized recommendation models based on graph structure have advanced greatly in predicting user preferences.However,geographical region entities that reflect the geographical context of the items is not being utilized in previous works,leaving room for the improvement of personalized recommendation.This study proposes a region-aware neural graph collaborative filtering(RA-NGCF)model,which introduces the geographical regions for improving the prediction of user preference.The approach first characterizes the relationships between items and users with a user-item-region graph.And,a neural network model for the region-aware graph is derived to capture the higher-order interaction among users,items,and regions.Finally,the model fuses region and item vectors to infer user preferences.Experiments on real-world dataset results show that introducing region entities improves the accuracy of personalized recommendations.This study provides a new approach for optimizing personalized recommendation as well as a methodological reference for facilitating geographical regions for optimizing spatial applications.
基金the National Natural Science Foundation of China(Nos.62162012,62173278,and 62072061)the Science and Technology Support Program of Guizhou Province,China(No.QKHZC2021YB531)+3 种基金the Youth Science and Technology Talents Development Project of Colleges and Universities in Guizhou Province,China(No.QJHKY2022175)the Science and Technology Foundation of Guizhou Province,China(Nos.QKHJCZK2022YB195 and QKHJCZK2022YB197)the Natural Science Research Project of the Department of Education of Guizhou Province,China(No.QJJ2022015)the Scientific Research Platform Project of Guizhou Minzu University,China(No.GZMUSYS[2021]04)。
文摘With the rapid development of data-driven intelligent transportation systems,an efficient route recommendation method for taxis has become a hot topic in smart cities.We present an effective taxi route recommendation approach(called APFD)based on the artificial potential field(APF)method and Dijkstra method with mobile trajectory big data.Specifically,to improve the efficiency of route recommendation,we propose a region extraction method that searches for a region including the optimal route through the origin and destination coordinates.Then,based on the APF method,we put forward an effective approach for removing redundant nodes.Finally,we employ the Dijkstra method to determine the optimal route recommendation.In particular,the APFD approach is applied to a simulation map and the real-world road network on the Fourth Ring Road in Beijing.On the map,we randomly select 20 pairs of origin and destination coordinates and use APFD with the ant colony(AC)algorithm,greedy algorithm(A*),APF,rapid-exploration random tree(RRT),non-dominated sorting genetic algorithm-II(NSGA-II),particle swarm optimization(PSO),and Dijkstra for the shortest route recommendation.Compared with AC,A*,APF,RRT,NSGA-II,and PSO,concerning shortest route planning,APFD improves route planning capability by 1.45%–39.56%,4.64%–54.75%,8.59%–37.25%,5.06%–45.34%,0.94%–20.40%,and 2.43%–38.31%,respectively.Compared with Dijkstra,the performance of APFD is improved by 1.03–27.75 times in terms of the execution efficiency.In addition,in the real-world road network,on the Fourth Ring Road in Beijing,the ability of APFD to recommend the shortest route is better than those of AC,A*,APF,RRT,NSGA-II,and PSO,and the execution efficiency of APFD is higher than that of the Dijkstra method.
文摘输入图像尺度不一导致在复杂背景上基于深度学习的目标检测算法存在检测速度慢和检测精度低的问题。为了解决这些问题,基于更快区域卷积网络,提出一种包含区域网络、特征提取和区域分类3个模块的目标检测算法。首先通过感兴趣区域提取网络RPNS和RPNB,得到带有对象得分的矩形目标推荐;再利用多尺度和多高宽比的锚点框计算并提取每个推荐的局部特征;最后用剔除重叠度(Degree of overlap,DOL)设置阈值进行分类和回归。实验结果表明,该算法在多尺度目标的图像上有更好的鲁棒性,平均准确度均值(mean Average Precision,mAP)达75.4%,多尺度目标检测性能有所提升。