期刊文献+
共找到96篇文章
< 1 2 5 >
每页显示 20 50 100
用于图像分类的卷积神经网络中激活函数的设计 被引量:57
1
作者 王红霞 周家奇 +1 位作者 辜承昊 林泓 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2019年第7期1363-1373,共11页
为了提高图像分类效果,针对卷积神经网络中常用激活函数relu在x负半轴的导数恒为零,导致训练过程中容易造成神经元"坏死"以及现有组合激活函数relu-softplus在模型收敛情况下学习率过小导致收敛速度慢的问题,提出新的组合激... 为了提高图像分类效果,针对卷积神经网络中常用激活函数relu在x负半轴的导数恒为零,导致训练过程中容易造成神经元"坏死"以及现有组合激活函数relu-softplus在模型收敛情况下学习率过小导致收敛速度慢的问题,提出新的组合激活函数relu-softsign.分析激活函数在训练过程中的作用,给出激活函数在设计时需要考虑的要点;根据这些要点,将relu和softsign函数于x轴正、负半轴进行分段组合,使其x负半轴导数不再恒为零;分别在MNIST、PI100、CIFAR-100和Caltech256数据集上,与单一的激活函数和relu-softplus组合激活函数进行对比实验.实验结果表明,使用relu-softsign组合激活函数提高了模型分类准确率,简单有效地缓解了神经元不可逆"坏死"现象;加快了模型的收敛速度,在复杂数据集上该组合函数的收敛性能更好. 展开更多
关键词 图像分类 卷积神经网络 激活函数 relu 神经元坏死 组合激活函数
下载PDF
激活函数的发展综述及其性质分析 被引量:46
2
作者 张焕 张庆 于纪言 《西华大学学报(自然科学版)》 CAS 2021年第4期1-10,共10页
为深入研究激活函数的作用机制,探讨优良激活函数应具备的性质,以提高卷积神经网络模型的泛化能力,文章综述了激活函数的发展,分析得到优良激活函数应具备的性质。激活函数大体可分为“S型”激活函数、“ReLU型”激活函数、组合型激活... 为深入研究激活函数的作用机制,探讨优良激活函数应具备的性质,以提高卷积神经网络模型的泛化能力,文章综述了激活函数的发展,分析得到优良激活函数应具备的性质。激活函数大体可分为“S型”激活函数、“ReLU型”激活函数、组合型激活函数、其他类型激活函数。在深度学习发展初期,“S型”激活函数得到了广泛应用。随着网络模型的加深,“S型”激活函数出现了“梯度消失”问题。ReLU激活函数的出现缓解了这一问题,但ReLU负半轴“置0”则引入了“神经元坏死”的问题。随后出现的改进激活函数大多基于ReLU负半轴进行改动,以缓减“神经元坏死”。文章最后以多层感知机为例,推导了优良激活函数在前向、反向传播中的作用,并得出其应该具备的性质。 展开更多
关键词 深度学习 卷积神经网络 激活函数 反向传播 relu
下载PDF
卷积神经网络中ReLU激活函数优化设计 被引量:32
3
作者 王双印 滕国文 《信息通信》 2018年第1期42-43,共2页
卷积神经网络中的激活函数的作用是激活神经元的特征然后保留并映射出来,这是神经网络能模拟人脑机制,解决非线性问题的关键。ReLU函数更是其中的佼佼者,但同时其自身也存在不足之处。文章从两个方面对ReLU函数进行了优化设计。对使用... 卷积神经网络中的激活函数的作用是激活神经元的特征然后保留并映射出来,这是神经网络能模拟人脑机制,解决非线性问题的关键。ReLU函数更是其中的佼佼者,但同时其自身也存在不足之处。文章从两个方面对ReLU函数进行了优化设计。对使用梯度下降法的激活函数的学习率进行讨论研究并提出可行的学习率改进方法。提出一种新型校正激活函数,称其为e-ln函数,经过Mnist数据集仿真实验证明某些情况下其性能要优于ReLU。 展开更多
关键词 卷积神经网络 激活函数 relu 优化设计
下载PDF
改进MobileNet的图像分类方法研究 被引量:24
4
作者 高淑萍 赵清源 +1 位作者 齐小刚 程孟菲 《智能系统学报》 CSCD 北大核心 2021年第1期11-20,共10页
针对神经网络结构的特征提取能力不足以及在包含复杂图像特征的数据集上分类准确率不高的问题,本文提出了一种对MobileNet神经网络的改进策略(L-MobileNet)。将原标准卷积形式替换为深度可分离卷积形式,并将深度卷积层得到的特征图执行... 针对神经网络结构的特征提取能力不足以及在包含复杂图像特征的数据集上分类准确率不高的问题,本文提出了一种对MobileNet神经网络的改进策略(L-MobileNet)。将原标准卷积形式替换为深度可分离卷积形式,并将深度卷积层得到的特征图执行取反操作,通过深度卷积融合层传递至下一层;采用Leaky ReLU激活函数代替原ReLU激活函数来保留图像中更多的正负特征信息,并加入类残差结构避免梯度弥散现象。与6种方法进行对比,实验结果表明:L-MobileNet在数据集Cifar-10、Cifar-100(coarse)、Cifar-100(fine)和Dogs vs Cats上平均准确率和最高准确率都取得了最佳结果。 展开更多
关键词 卷积神经网络 图像分类 特征提取 MobileNet 深度可分离卷积 激活函数 Leaky relu 残差结构
下载PDF
卷积神经网络中激活函数的一种改进 被引量:18
5
作者 刘小文 郭大波 李聪 《测试技术学报》 2019年第2期121-125,共5页
卷积神经网络中激活函数的作用是激活神经元的特征,然后保留并映射出来,这是人工神经网络能模拟人脑机制,解决非线性问题的关键.针对传统卷积神经网络出现的震荡、不收敛甚至过拟合的情况,对激活ReLU函数进行优化.提出一种新型矫正激活... 卷积神经网络中激活函数的作用是激活神经元的特征,然后保留并映射出来,这是人工神经网络能模拟人脑机制,解决非线性问题的关键.针对传统卷积神经网络出现的震荡、不收敛甚至过拟合的情况,对激活ReLU函数进行优化.提出一种新型矫正激活函数,称其为ReLU阈值函数.通过对数据集caltech101和caltech256进行训练,证明其在图片分类上的性能要优于ReLU函数.其中用Alexnet网络模型对caltech101数据集进行训练时的分类准确率由之前的97.7%提高到99.3%,对caltech256数据集进行训练时的分类准确率由之前的65.4%提高到92.3%. 展开更多
关键词 卷积神经网络 激活函数 relu Prelu
下载PDF
基于改进多层感知机的手写数字识别 被引量:11
6
作者 何平 刘紫燕 《通信技术》 2018年第9期2075-2080,共6页
针对传统多层感知机(Multi-Layer Perceptron,MLP)模型在手写数字识别方面识别精度不高、识别效率较低的问题,提出改进的多层感知机模型,引入Dropout解决过拟合问题,Adagrad优化参数调试过程,ReLU解决梯度弥散问题,并在TensorFlow软件... 针对传统多层感知机(Multi-Layer Perceptron,MLP)模型在手写数字识别方面识别精度不高、识别效率较低的问题,提出改进的多层感知机模型,引入Dropout解决过拟合问题,Adagrad优化参数调试过程,ReLU解决梯度弥散问题,并在TensorFlow软件平台上实现该改进模型。实验表明,该改进的MLP模型能够有效地进行特征学习,在提高识别性能上表现优秀。与传统MLP算法模型相比,识别准确率提高了将近7.0%,识别效率提高了27.3s。 展开更多
关键词 多层感知机 手写数字识别 DROPOUT Adagrad relu
下载PDF
基于卷积神经网络的城管案件图像分类方法 被引量:10
7
作者 杨浩 李灵巧 +2 位作者 杨辉华 刘振丙 潘细朋 《计算机工程与应用》 CSCD 北大核心 2018年第10期242-248,266,共8页
以智慧城市管理系统中上报的案件图像为研究对象,利用卷积神经网络能够自行学习图像特征的优势,提出一种改进的深层卷积神经网络算法,并利用该算法对智慧城市管理系统(下简称"智慧城管")的案件图像进行快速精确分类,从而完成... 以智慧城市管理系统中上报的案件图像为研究对象,利用卷积神经网络能够自行学习图像特征的优势,提出一种改进的深层卷积神经网络算法,并利用该算法对智慧城市管理系统(下简称"智慧城管")的案件图像进行快速精确分类,从而完成城市管理系统中案件的自动分类。采用ZCA白化处理降低图像数据特征之间的相关性;搭建八层卷积神经网络对白化后的图像进行分类,并在卷积层采用线性纠正单元(Re LU)加速训练过程,在pooling层利用dropout技术防止算法过拟合;在网络精调阶段采用BP(Back Propagation)算法进行优化,提高算法的鲁棒性。基于上述方法对道路交通类和市容环境类两类案件图像进行二分类实验,平均精度达到97.5%,F1-Score达到0.98,性能超过了LSVM、SAE以及传统的CNN等方法;同时该方法又对电动车乱摆放类、乱扔垃圾类、机动车违章停放类、垃圾桶周围脏乱类共四类案件进行四分类实验,平均精度为90.5%,F1-Score为0.91,性能依然超过了LSVM、SAE以及传统的CNN等方法。 展开更多
关键词 智慧城管 图像分类 卷积神经网络 零相位分量分析(ZCA)白化 DROPOUT relu
下载PDF
卷积神经网络中SPReLU激活函数的优化研究 被引量:9
8
作者 吴婷婷 许晓东 吴云龙 《计算机与数字工程》 2021年第8期1637-1641,共5页
由于激活函数本身的特性,使得卷积神经网络出现了梯度消失、神经元死亡、均值偏移、稀疏表达能力差等问题,针对这些问题,将“S”型激活函数和ReLU系激活函数进行了对比,分别讨论其优点和不足,并结合ReLU、PReLU和Softplus三种激活函数优... 由于激活函数本身的特性,使得卷积神经网络出现了梯度消失、神经元死亡、均值偏移、稀疏表达能力差等问题,针对这些问题,将“S”型激活函数和ReLU系激活函数进行了对比,分别讨论其优点和不足,并结合ReLU、PReLU和Softplus三种激活函数优点,提出了一种新型激活函数SPReLU。实验结果表明,SPReLU函数在性能上优于其他激活函数,收敛速度快,能有效降低训练误差,缓解梯度消失和神经元死亡等问题,能够有效地提高文本分类模型的准确性。 展开更多
关键词 卷积神经网络 激活函数 梯度消失 神经元死亡 relu
下载PDF
基于ELU卷积神经网络的视频烟雾检测 被引量:8
9
作者 郝建红 范宗皓 王晖 《燕山大学学报》 CAS 北大核心 2020年第4期397-402,共6页
由于烟雾边界具有不确定性、半透明性和易受其他因素影响的特性,导致传统的图像识别方法对于烟雾的检测存在较大的缺陷和局限性。本文从理论上分析比较了卷积神经网络一般采用的四种激活函数Sigmoid、Tanh、RELU和ELU函数,并基于烟雾的... 由于烟雾边界具有不确定性、半透明性和易受其他因素影响的特性,导致传统的图像识别方法对于烟雾的检测存在较大的缺陷和局限性。本文从理论上分析比较了卷积神经网络一般采用的四种激活函数Sigmoid、Tanh、RELU和ELU函数,并基于烟雾的特性采用具有左侧软饱和性的ELU激活函数代替其他三种激活函数来构建检测烟雾的算法模型,与颜色+运动+形态方法、基于Gabor小波、采用RELU激活函数的检测烟雾模型进行了对比,实验结果表明采用ELU激活函数的模型相比上述方法,准确率提高了1~5个百分点。 展开更多
关键词 卷积神经网络 relu ELU 烟雾检测 图像识别
下载PDF
基于层级残差连接LSTM的命名实体识别 被引量:7
10
作者 王进 李颖 +2 位作者 蒋晓翠 吕晓旭 肖黄清 《江苏大学学报(自然科学版)》 CAS 北大核心 2022年第4期446-452,共7页
针对命名实体识别任务中现有的LSTM提取特征向量存在对短期信息特征表达能力不足的问题,提出一个基于层级残差连接的LSTM网络.通过添加残差块堆叠LSTM网络深度,增强短期信息特征非线性拟合能力;利用全局信息编码动态选择激活函数,在加... 针对命名实体识别任务中现有的LSTM提取特征向量存在对短期信息特征表达能力不足的问题,提出一个基于层级残差连接的LSTM网络.通过添加残差块堆叠LSTM网络深度,增强短期信息特征非线性拟合能力;利用全局信息编码动态选择激活函数,在加强网络计算能力的同时降低了参数量;通过注意力机制,对输入动态调整残差连接的层数加强模型拟合能力.给出了残差网络和Dynamic ReLU激活函数,建立了基于层级残差连接的LSTM命名实体识别整体框架,定义了残差连接模块、Dynamic ReLU模块、注意力机制模块.对比了所提出方法与FLAT、Lattice LSTM等相关算法,在Weibo和Resume数据集上进行试验.结果表明,基于层级残差连接的LSTM在Weibo上达到了最好的效果,在Resume上效果仅次于FLAT,F_(1)分别为0.7001、0.9586. 展开更多
关键词 命名实体识别 短期信息特征 LSTM 残差连接 Dynamic relu 注意力机制
下载PDF
基于ReLU激活函数的轧制力神经网络预报模型 被引量:7
11
作者 刘杰辉 范冬雨 田润良 《锻压技术》 CAS CSCD 北大核心 2016年第10期162-165,共4页
平整机轧制力的预报对轧制过程的优化控制有着重要意义。针对平整机轧制力预测精度不高的问题,提出采用Re LU(Rectified Linear Units)激活函数的神经网络模型来预报平整机的轧制力。在对数据进行主成分分析后,得到影响轧制力的主要因素... 平整机轧制力的预报对轧制过程的优化控制有着重要意义。针对平整机轧制力预测精度不高的问题,提出采用Re LU(Rectified Linear Units)激活函数的神经网络模型来预报平整机的轧制力。在对数据进行主成分分析后,得到影响轧制力的主要因素,并将其作为神经网络的输入层,将平整机轧制力作为输出层,通过使用Python语言编程进行实验,对神经网络模型隐层的相关参数及算法进行单一变量筛选,建立了保证轧制力预报精度最高的神经网络模型。实验结果表明,通过调整隐层层数、神经元数、传播算法、正则化方法,该模型能够将预测误差控制在10%以内,且该实验方法能够对不同输入参数下的平整机轧制力进行精确预报。 展开更多
关键词 轧制力 神经网络 relu 传播算法 正则化 平整机
原文传递
深度学习的BP神经网络在GNSS水准拟合中的应用 被引量:7
12
作者 董洲洋 徐卫明 +1 位作者 庄昊 邱广闻 《海洋测绘》 CSCD 2019年第5期26-29,共4页
针对误差逆向传播 BP ( back propagation)神经网络在 GNSS 水准拟合中存在梯度消失、陷于局部最小点的问题,通过使用深度学习中的分段线性整流函数Relu( rectified linear units)作为神经元激活函数,自适应矩估计Adam ( adaptive momen... 针对误差逆向传播 BP ( back propagation)神经网络在 GNSS 水准拟合中存在梯度消失、陷于局部最小点的问题,通过使用深度学习中的分段线性整流函数Relu( rectified linear units)作为神经元激活函数,自适应矩估计Adam ( adaptive moment estimation)算法作为网络优化函数,提出了一种基于深度学习的 BP 神经网络模型。研究结果表明:改进后的 BP 神经网络内外符合精度分别提高近 50%和 25%,可达 0. 9 cm 和 2. 4 cm,为 GNSS 水准拟合提供了新的思路。 展开更多
关键词 深度学习 GNSS 水准拟合 BP 神经网络 relu 函数 ADAM 算法
下载PDF
深度ReLU神经网络的万有一致性
13
作者 刘霞 王迪 《中国科学:信息科学》 CSCD 北大核心 2024年第3期638-652,共15页
随着数据量爆炸式增长、计算资源愈加丰富,浅层神经网络并不总能满足时代需求,从而导致深度神经网络的出现.深度神经网络的迅猛发展主要体现在应用领域,其理论研究相对匮乏.基于此,本文聚焦研究深度ReLU神经网络的万有一致性,具体内容包... 随着数据量爆炸式增长、计算资源愈加丰富,浅层神经网络并不总能满足时代需求,从而导致深度神经网络的出现.深度神经网络的迅猛发展主要体现在应用领域,其理论研究相对匮乏.基于此,本文聚焦研究深度ReLU神经网络的万有一致性,具体内容包括:首先,是否存在一个具有统一结构的深度神经网络(即深度、宽度、激活函数等均已确定)使得该深度神经网络可以学习更多特征,并具有万有逼近性;其次,针对已确定的深度神经网络模型,证明其是强万有一致的;最后,从实验的角度验证理论结果的合理性. 展开更多
关键词 深度神经网络 万有一致性 深度学习 relu 函数 逼近性
原文传递
基于改进卷积神经网络的辣椒病虫害检测
14
作者 史明健 袁缘 刘铭 《长春工业大学学报》 CAS 2024年第3期216-222,共7页
针对使用卷积神经网络对辣椒病虫害进行检测有参数多、计算量大和推理时间过长等问题,提出一种基于MobileNet-V2改进的轻量化神经网络,将MobileNet-V2的BN层中的激活函数全部替换为Leaky ReLU,保留特征图中更多的有效正负信息,以提高性... 针对使用卷积神经网络对辣椒病虫害进行检测有参数多、计算量大和推理时间过长等问题,提出一种基于MobileNet-V2改进的轻量化神经网络,将MobileNet-V2的BN层中的激活函数全部替换为Leaky ReLU,保留特征图中更多的有效正负信息,以提高性能和减少计算复杂度,增强模型的鲁棒性。在公开的辣椒病虫害数据集上使用VGG16、ResNet34和MobileNet-V2等模型对比后,改进的MobileNet-V2表现出更高的准确性和更少的参数量。相对于原来的MobileNet-V2准确率提升4%,相对VGG16、ResNet34两种模型参数分别下降97%和87%。能够移动端设备实现实时病虫害检测,提供高效便捷解决方案。 展开更多
关键词 辣椒病虫害 VGG16 MobileNet-V2 ResNet34 Leaky relu
下载PDF
基于多感受野特征增强的改进EfficientDet遥感目标检测算法
15
作者 张润梅 贾振楠 +3 位作者 李佳祥 吴路路 徐信芯 袁彬 《电光与控制》 CSCD 北大核心 2024年第7期53-60,96,共9页
针对遥感图像目标检测中小目标检测精度低、目标密集和尺度形态多样等问题,在轻量化网络EfficientDet-D0目标检测算法的基础上,在加权双向特征金字塔网络(BiFPN)进行特征融合时加入小尺度以及高一级尺度的中间信息,对BiFPN网络进行重构... 针对遥感图像目标检测中小目标检测精度低、目标密集和尺度形态多样等问题,在轻量化网络EfficientDet-D0目标检测算法的基础上,在加权双向特征金字塔网络(BiFPN)进行特征融合时加入小尺度以及高一级尺度的中间信息,对BiFPN网络进行重构,充分利用不同尺度信息,提高多尺度目标检测精度;同时在BiFPN中加入融合空洞卷积和快速归一化融合方法的特征增强模块,补强因特征图缩放所丢失的特征信息,进一步提高检测精度;另外,采用参数动态的Dynamic ReLU激活函数对原始网络中的参数静态的Swish激活函数进行改进。改进EfficientDet算法在不影响轻量化特点的前提下,对公开数据集Pascal VOC的目标检测平均精度均值(mAP)相较于原始算法提升11.9个百分点,亦优于其他目标检测算法。针对遥感图像数据集RSOD,通过Imgaug数据增强库对已有的936幅遥感图像数据集进行数据增广,利用改进模型进行迁移学习,未进行数据增广和增广后的目标检测结果分别为88.38%和96.78%,证明所提算法可以满足实际应用中对遥感图像目标的检测要求。 展开更多
关键词 深度学习 遥感图像 目标检测 EfficientDet 多尺度特征融合 特征增强模块 Dynamic relu
下载PDF
一种使用log函数的新型修正激活单元LogReLU 被引量:6
16
作者 王多民 刘淑芬 《吉林大学学报(理学版)》 CAS CSCD 北大核心 2017年第3期617-622,共6页
提出一种新型校正激活函数的改进,该新型校正激活函数带有一个可变参数,使用对数函数对正区域的梯度进行矫正,解决了预测准确率较低的问题.改进的激活函数使用两个不同参数分别控制正区域和负区域的梯度.通过对两个不同数据集进行仿真... 提出一种新型校正激活函数的改进,该新型校正激活函数带有一个可变参数,使用对数函数对正区域的梯度进行矫正,解决了预测准确率较低的问题.改进的激活函数使用两个不同参数分别控制正区域和负区域的梯度.通过对两个不同数据集进行仿真实验的结果表明,新提出的两种方法效果均好于原始的修正线性单元,带有两个参数的改进使验证错误率分别降低了0.14%和5.33%. 展开更多
关键词 人工智能 卷积神经网络 激活函数 relu
下载PDF
基于改进VGG16图像分类方法研究
17
作者 伊卫国 杨金玮 《大连交通大学学报》 CAS 2024年第4期108-112,120,共6页
针对神经网络模型在训练过程中遇到的收敛速度慢和测试样本不平衡导致的准确率降低问题,提出了一种基于改进VGG16图像分类模型的LBF-VGG16(Leaky-Bactch-Focal-VGG16)。该模型将原Relu激活函数替换为Leaky Relu,并在卷积层与激活函数之... 针对神经网络模型在训练过程中遇到的收敛速度慢和测试样本不平衡导致的准确率降低问题,提出了一种基于改进VGG16图像分类模型的LBF-VGG16(Leaky-Bactch-Focal-VGG16)。该模型将原Relu激活函数替换为Leaky Relu,并在卷积层与激活函数之间引入BN层,以优化收敛效果。在训练过程中,采用SGD优化器,并融入Focal Loss损失函数。试验结果表明,LBF-VGG16模型在分类效果和收敛速度方面较改进前均有显著提升。 展开更多
关键词 图像分类 计算机视觉 VGG16 Leaky relu Focal Loss
下载PDF
基于改进的LeNet-5卷积神经网络交通标志的识别 被引量:6
18
作者 张猛 钱育蓉 +1 位作者 杜娇 范迎迎 《东北师大学报(自然科学版)》 CAS 北大核心 2020年第1期92-97,共6页
针对目前现有交通标志识别算法耗时长、识别率低等问题,提出了一种改进的LeNet-5卷积神经网络模型(Improved LeNet-5 Convolutional Neural Network,ILN-CNN).首先,对原有的LeNet-5卷积神经网络模型构造2个相对独立的不同卷积核的子卷... 针对目前现有交通标志识别算法耗时长、识别率低等问题,提出了一种改进的LeNet-5卷积神经网络模型(Improved LeNet-5 Convolutional Neural Network,ILN-CNN).首先,对原有的LeNet-5卷积神经网络模型构造2个相对独立的不同卷积核的子卷积网络,用于加快特征提取;其次,增加子网络中卷积核的个数,以增强网络区分不同交通标志的能力;最后,添加激活函数ReLU,增加Dropout层,以达到加快函数收敛,避免CNN过度拟合,降低神经元间互适应的效果.实验结果表明:与传统的系统结构相比,ILN-CNN对交通标志的识别准确率达到93.558%;比BP神经网络模型、支持向量机分类算法分别提高了12.206%和4.018%,并且在识别时间上具有一定的优势. 展开更多
关键词 交通标志识别 特征提取 卷积神经网络 ILN-CNN LeNet-5 relu
下载PDF
基于CNN的图像分类中激活函数的研究 被引量:5
19
作者 张琴 《现代计算机》 2020年第32期43-47,共5页
卷积神经网络在图像分类领域中得到广泛的应用,激活函数是卷积神经网络模型的重要组成部分,"激活的神经元"使CNN具备分层的非线性特征学习能力。针对现有的激活函数存在"梯度消失"、"神经元坏死"和不易... 卷积神经网络在图像分类领域中得到广泛的应用,激活函数是卷积神经网络模型的重要组成部分,"激活的神经元"使CNN具备分层的非线性特征学习能力。针对现有的激活函数存在"梯度消失"、"神经元坏死"和不易收敛等缺陷,设计一种新的非线性非饱和的激活函数SReLU。基于Keras深度学习框架对不同的激活函数分别在MINIST数据集和CIFA-100数据集上进行对比研究,实验结果表明,SReLU在两种不同的数据集上都取得相对最优的效果。 展开更多
关键词 CNN 激活函数 relu 深度学习
下载PDF
基于有效通道注意力EfficientNet的肝硬化识别
20
作者 马粤盼 赵希梅 张宁 《青岛大学学报(自然科学版)》 CAS 2023年第1期15-21,共7页
针对传统卷积神经网络模型复杂度高、参数量大,网络分类的精度和效率不佳等问题,提出一种应用于医学超声图像中肝硬化识别的深度学习方法(E-EfficientNet)。在EfficientNet网络模型中,将模块MBConv中的注意力机制SENet模块替换为一种不... 针对传统卷积神经网络模型复杂度高、参数量大,网络分类的精度和效率不佳等问题,提出一种应用于医学超声图像中肝硬化识别的深度学习方法(E-EfficientNet)。在EfficientNet网络模型中,将模块MBConv中的注意力机制SENet模块替换为一种不降维的ECANet模块,避免降维操作导致的特征信息缺失,增强通道学习能力并降低模型复杂度;将可变形卷积融入EfficientNet网络,利用可变形卷积核能够依据目标形态自适应调整变化的特点,充分学习图像细节,提升算法的泛化能力和特征提取能力;对有限样本进行数据增强,避免训练过程中出现过拟合,并使用Leaky ReLU作为激活函数保留图像负值特征信息,提高对肝硬化的识别效果。实验结果表明,该模型复杂度低,在肝硬化识别中准确率为98.9%。 展开更多
关键词 EfficientNet MBConv 注意力机制 可变形卷积 Leaky relu
下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部