期刊文献+

用于图像分类的卷积神经网络中激活函数的设计 被引量:57

Design of activation function in CNN for image classification
下载PDF
导出
摘要 为了提高图像分类效果,针对卷积神经网络中常用激活函数relu在x负半轴的导数恒为零,导致训练过程中容易造成神经元"坏死"以及现有组合激活函数relu-softplus在模型收敛情况下学习率过小导致收敛速度慢的问题,提出新的组合激活函数relu-softsign.分析激活函数在训练过程中的作用,给出激活函数在设计时需要考虑的要点;根据这些要点,将relu和softsign函数于x轴正、负半轴进行分段组合,使其x负半轴导数不再恒为零;分别在MNIST、PI100、CIFAR-100和Caltech256数据集上,与单一的激活函数和relu-softplus组合激活函数进行对比实验.实验结果表明,使用relu-softsign组合激活函数提高了模型分类准确率,简单有效地缓解了神经元不可逆"坏死"现象;加快了模型的收敛速度,在复杂数据集上该组合函数的收敛性能更好. A new combinatorial activation function called relu-softsign was proposed aiming at the problem that the derivative of the commonly used activation function relu in the convolutional neural network is constant to zero at the x negative axis,which makes it easy to cause neuron necrosis during training,and the existing combinatorial activation function relu-softplus can only use the small learning rate in the case of model convergence,which leads to slow convergence.The image classification effect was improved.The role of the activation function during training was analyzed,and the key points that need to be considered in the design of the activation function were given.The relu and softsign functions were combined piecewise in the positive and negative semi axis of the x axis according to these points,so that the derivative of x negative semi axis was no longer constant to zero.Then comparision with the single activation function and relu-softplus combination activation function was conducted on the MNIST,PI100,CIFAR-100 and Caltech256 datasets.The experimental results show that the combinatorial activation function relu-softsign improves the model classification accuracy,simply and effectively mitigates the irreversible "necrosis" phenomenon of neurons.The convergence speed of the model is accelerated,especially on complex data sets.
作者 王红霞 周家奇 辜承昊 林泓 WANG Hong-xia;ZHOU Jia-qi;GU Cheng-hao;LIN Hong(School of Computer Science and Technology,Wuhan University of Technology,Wuhan 430063,China)
出处 《浙江大学学报(工学版)》 EI CAS CSCD 北大核心 2019年第7期1363-1373,共11页 Journal of Zhejiang University:Engineering Science
关键词 图像分类 卷积神经网络 激活函数 relu 神经元坏死 组合激活函数 image classification convolutional neural network activation function relu neurons necrosis combinatorial activation function
  • 相关文献

参考文献6

  • 1黄凯奇,任伟强,谭铁牛.图像物体分类与检测算法综述[J].计算机学报,2014,37(6):1225-1240. 被引量:193
  • 2常亮,邓小明,周明全,武仲科,袁野,杨硕,王宏安.图像理解中的卷积神经网络[J].自动化学报,2016,42(9):1300-1312. 被引量:423
  • 3吴正文..卷积神经网络在图像分类中的应用研究[D].电子科技大学,2015:
  • 4石琪..基于卷积神经网络图像分类优化算法的研究与验证[D].北京交通大学,2017:
  • 5李明威..图像分类中的卷积神经网络方法研究[D].南京邮电大学,2016:
  • 6贾世杰..基于内容的商品图像分类方法研究[D].大连理工大学,2013:

二级参考文献68

  • 1Marr D.Vision:A Computational Investigation Into the Human Representation and Processing of Visual Information.Cambridge:The MIT Press,2010. 被引量:1
  • 2LeCun Y,Bottou L,Bengio Y,Haffner P.Gradient-based learning applied to document recognition.Proceedings of the IEEE,1998,86(11):2278-2324. 被引量:1
  • 3Ferrari V,Jurie F,Schmid C.From images to shape models for object detection.International Journal of Computer Vision,2009,87(3):284-303. 被引量:1
  • 4Latecki L J,Lakamper R,Eckhardt U.Shape descriptors for non rigid shapes with a single closed contour//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Hilton Head,USA,2000,1:424-429. 被引量:1
  • 5Krizhevsky A.Learning Multiple Layers of Features from Tiny Images[M.S.dissertation].University of Toronto,2009. 被引量:1
  • 6Torralba A,Fergus R,Freeman W T.80 million tiny images:A large dataset for non-parametric object and scene recognition.IEEE Transactions on Pattern Analysis and Machine Intelligence,2008,30(11):1958-1970. 被引量:1
  • 7Li FebFei,Fergus R,Perona P.Learning generative visual models from few training examples:An incremental Bayesian approach tested on 101 object categories//Proceedings of the Computer Vision and Pattern Recognition (CVPR),Workshop on Generative-Model Based Vision.Washington,USA,2004:178. 被引量:1
  • 8Griffin G,Holub A D,Perona P.The Caltech 256.Caltech Technical Report CNS-TR-2007-001. 被引量:1
  • 9Lazebnik S,Schmid C,Ponce J.Beyond bags of features:Spatial pyramid matching for recognizing natural scene categories//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).New York,USA,2006:2169-2178. 被引量:1
  • 10Li Fei-Fei,Perona P.A Bayesian hierarchical model for learning natural scene categories//Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR).Washington,USA,2005:524-531. 被引量:1

共引文献608

同被引文献530

引证文献57

二级引证文献305

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部