In this paper, we study a class of Finsler metrics defined by a vector field on a Riemannian space form. We give an explicit formula for those with isotropic S-curvature. This class contains all Randers metrics of con...In this paper, we study a class of Finsler metrics defined by a vector field on a Riemannian space form. We give an explicit formula for those with isotropic S-curvature. This class contains all Randers metrics of constant flag curvature.展开更多
In this paper, we find some new homogeneous manifolds G/H admitting non-Riemannian EinsteinRanders metrics when G is the compact simple Lie group E6, or E7 or E8. In the beginning, we prove that these homogeneous mani...In this paper, we find some new homogeneous manifolds G/H admitting non-Riemannian EinsteinRanders metrics when G is the compact simple Lie group E6, or E7 or E8. In the beginning, we prove that these homogeneous manifolds admit Riemannian Einstein metrics. Based on these metrics, we obtain non-Riemannian Einstein Randers metrics on them.展开更多
基金the National Natural Science Foundation of China (10371138)
文摘In this paper, we study a class of Finsler metrics defined by a vector field on a Riemannian space form. We give an explicit formula for those with isotropic S-curvature. This class contains all Randers metrics of constant flag curvature.
基金supported by National Natural Science Foundation of China(Grant Nos.10971104,11001133 and 11221091)
文摘In this paper, we find some new homogeneous manifolds G/H admitting non-Riemannian EinsteinRanders metrics when G is the compact simple Lie group E6, or E7 or E8. In the beginning, we prove that these homogeneous manifolds admit Riemannian Einstein metrics. Based on these metrics, we obtain non-Riemannian Einstein Randers metrics on them.