针对主动配电系统(active distribution system,ADS)中分布式电源(distributed generation,DG)的间歇性和主动负荷及储能系统(energy storage system,ESS)的可控性特点,基于ADS的最大供电能力(ADS’s total supply capability,ATSC)提...针对主动配电系统(active distribution system,ADS)中分布式电源(distributed generation,DG)的间歇性和主动负荷及储能系统(energy storage system,ESS)的可控性特点,基于ADS的最大供电能力(ADS’s total supply capability,ATSC)提出一种评价ADS安全性的安全等级划分方法。首先,提出了节点多性质的ADS最大供电能力求解模型,引入DG及ESS的相关约束,并将其中的非线性约束转化为旋转锥的笛卡尔乘积约束形式,用锥优化方法进行快速计算。其次,基于静态安全分析定义了安全裕度、主动负荷熵、主动调节率及主动安全度指标,结合失负荷率及越限指标构成评价指标体系,进而提出了ADS安全等级划分方法,并用该方法将ADS划分为5个安全等级。用粒子群算法对主动负荷进行优化并用一致性主动控制方法制定储能系统充放电策略,应用该文提出的评价方法对比优化前后配电网的安全等级情况,验证了所提方法的实用性及有效性。展开更多
This paper proposes a graph computing based mixed integer programming(MIP)framework for solving the security constrained unit commitment(SCUC)problem in hydro-thermal power systems incorporating pumped hydro storage(P...This paper proposes a graph computing based mixed integer programming(MIP)framework for solving the security constrained unit commitment(SCUC)problem in hydro-thermal power systems incorporating pumped hydro storage(PHS).The proposed graph computing-based MIP framework considers the economic operations of thermal units,cascade hydropower stations and PHS stations,as well as their technical impacts towards the network security.First,the hydro-thermal power system data and unit information are stored in a graph structure with nodes and edges,which enables nodal and hierarchical parallel computing for the unit commitment(UC)solution calculation and network security analysis.A MIP model is then formulated to solve the SCUC problem with the mathematical models of thermal units,cascade hydropower stations and PHS stations.In addition,two optimization approaches including convex hull reformulation(CHR)and special ordered set(SOS)methods are introduced for speeding up the MIP calculation procedure.To ensure the system stability under the derived UC solution,a parallelized graph power flow(PGPF)algorithm is proposed for the hydro-thermal power system network security analysis.Finally,case studies of the IEEE 118-bus system and a practical 2749-bus hydro-thermal power system are introduced to demonstrate the feasibility and validity of the proposed graph computing-based MIP framework.展开更多
文摘针对主动配电系统(active distribution system,ADS)中分布式电源(distributed generation,DG)的间歇性和主动负荷及储能系统(energy storage system,ESS)的可控性特点,基于ADS的最大供电能力(ADS’s total supply capability,ATSC)提出一种评价ADS安全性的安全等级划分方法。首先,提出了节点多性质的ADS最大供电能力求解模型,引入DG及ESS的相关约束,并将其中的非线性约束转化为旋转锥的笛卡尔乘积约束形式,用锥优化方法进行快速计算。其次,基于静态安全分析定义了安全裕度、主动负荷熵、主动调节率及主动安全度指标,结合失负荷率及越限指标构成评价指标体系,进而提出了ADS安全等级划分方法,并用该方法将ADS划分为5个安全等级。用粒子群算法对主动负荷进行优化并用一致性主动控制方法制定储能系统充放电策略,应用该文提出的评价方法对比优化前后配电网的安全等级情况,验证了所提方法的实用性及有效性。
文摘This paper proposes a graph computing based mixed integer programming(MIP)framework for solving the security constrained unit commitment(SCUC)problem in hydro-thermal power systems incorporating pumped hydro storage(PHS).The proposed graph computing-based MIP framework considers the economic operations of thermal units,cascade hydropower stations and PHS stations,as well as their technical impacts towards the network security.First,the hydro-thermal power system data and unit information are stored in a graph structure with nodes and edges,which enables nodal and hierarchical parallel computing for the unit commitment(UC)solution calculation and network security analysis.A MIP model is then formulated to solve the SCUC problem with the mathematical models of thermal units,cascade hydropower stations and PHS stations.In addition,two optimization approaches including convex hull reformulation(CHR)and special ordered set(SOS)methods are introduced for speeding up the MIP calculation procedure.To ensure the system stability under the derived UC solution,a parallelized graph power flow(PGPF)algorithm is proposed for the hydro-thermal power system network security analysis.Finally,case studies of the IEEE 118-bus system and a practical 2749-bus hydro-thermal power system are introduced to demonstrate the feasibility and validity of the proposed graph computing-based MIP framework.