In this paper,we consider a nonlinear ratio-dependent prey-predator model with constant prey refuge in the prey population.Both Allee and fear phenomena are incorporated explicitly in the growth rate of the prey popul...In this paper,we consider a nonlinear ratio-dependent prey-predator model with constant prey refuge in the prey population.Both Allee and fear phenomena are incorporated explicitly in the growth rate of the prey population.The qualitative behaviors of the proposed model are investigated around the equilibrium points in detail.Hopf bifurcation including its direction and stability for the model is also studied.We observe that fear of predation risk can have both stabilizing and destabilizing effects and induces bubbling phenomenon in the system.It is also observed that for a fixed strength of fear,an increase in the Allee parameter makes the system unstable,whereas an increase in prey refuge drives the system toward stability.However,higher values of both the Allee and prey refuge parameters have negative impacts and the populations go to extinction.Further,we explore the variation of densities of the populations in different bi-parameter spaces,where the coexistence equilibrium point remains stable.Numerical simulations are carried out to explore the dynamical behaviors of the system with the help of MATLAB software.展开更多
In an environment,the food chains are balanced by the prey-predator interactions.When a predator species is provided with more than one prey population,it avails the option of prey switching between prey species accor...In an environment,the food chains are balanced by the prey-predator interactions.When a predator species is provided with more than one prey population,it avails the option of prey switching between prey species according to their availability.So,prey switching of predators mainly helps to increase the overall growth rate of a predator species.In this work,we have proposed a two prey-one predator system where the predator population adopts switching behavior between two prey species at the time of consumption.Both the prey population exhibit a strong Allee effect and the predator population is considered to be a generalist one.The proposed system is biologically well-defined as the system variables are positive and do not increase abruptly with time.The local stability analysis reveals that all the predator-free equilibria are saddle points whereas the prey-free equilibrium is always stable.The intrinsic growth rates of prey,the strong Allee parameters,and the prey refuge parameters are chosen to be the controlling parameters here.The numerical simulation reveals that in absence of one prey,the other prey refuge parameter can change the system dynamics by forming a stable or unstable limit cycle.Moreover,a situation of bi-stability,tri-stability,or even multi-stability of equilibrium points occurs in this system.As in presence of the switching effect,the predator chooses prey according to their abundance,so,increasing refuge in one prey population decreases the count of the second prey population.It is also observed that the count of predator population reaches a comparatively higher value even if they get one prey population at its fullest quantity and only a portion of other prey species.So,in the scarcity of one prey species,switching to the other prey is beneficial for the growth of the predator population.展开更多
This work investigates a prey-predator model featuring a Holling-type II functional response,in which the fear effect of predation on the prey species,as well as prey refuge,are considered.Specifically,the model assum...This work investigates a prey-predator model featuring a Holling-type II functional response,in which the fear effect of predation on the prey species,as well as prey refuge,are considered.Specifically,the model assumes that the growth rate of the prey population decreases as a result of the fear of predators.Moreover,the detection of the predator by the prey species is subject to a delay known as the fear response delay,which is incorporated into the model.The paper establishes the preliminary conditions for the solution of the delayed model,including positivity,boundedness and permanence.The paper discusses the existence and stability of equilibrium points in the model.In particular,the paper considers the discrete delay as a bifurcation parameter,demonstrating that the system undergoes Hopf bifurcation at a critical value of the delay parameter.The direction and stability of periodic solutions are determined using central manifold and normal form theory.Additionally,the global stability of the model is established at axial and positive equilibrium points.An extensive numerical simulation is presented to validate the analytical findings,including the continuation of the equilibrium branch for positive equilibrium points.展开更多
The pattern formation in reaction-diffusion system has long been the subject of interest to the researchers in the domain of mathematical ecology because of its universal exis- tence and importance. The present invest...The pattern formation in reaction-diffusion system has long been the subject of interest to the researchers in the domain of mathematical ecology because of its universal exis- tence and importance. The present investigation deals with a spatial dynamics of the Beddington-DeAngelis predator-prey model in the presence of a constant proportion of prey refuge. The model system representing boundary value problem under study is subjected to homogeneous Neumann boundary conditions. The asymptotic stability including the local and the global stability and the bifurcation as well of the unique pos- itive homogeneous steady state of the corresponding temporal model has been analyzed. The Turing instability region in two-parameter space and the condition of diffusion- driven instability of the spatiotemporal model are investigated. Based on the appro- priate numerical simulations, the present model dynamics in Turing space appears to get influenced by prey refuge while it exhibits diffusion-controlled pattern formation growth to spots, stripe-spot mixtures, labyrinthine, stripe-hole mixtures and holes repli- cation. The results obtained appear to enrich the findings of the model system under consideration.展开更多
In this paper, an infected predator-prey model with prey refuge is investigated. The effects of refuge on the stability of the equilibria of the system are analyzed. Moreover, using the criterion introduced by Liu, we...In this paper, an infected predator-prey model with prey refuge is investigated. The effects of refuge on the stability of the equilibria of the system are analyzed. Moreover, using the criterion introduced by Liu, we derive the Hopf bifurcation conditions of the system with respect to the refuge value.展开更多
In this paper, we study a predator-prey model with prey refuge and disease. We study the local asymptotic stability of the equilibriums of the system. Further, we show that the equilibria are globally asymptotically s...In this paper, we study a predator-prey model with prey refuge and disease. We study the local asymptotic stability of the equilibriums of the system. Further, we show that the equilibria are globally asymptotically stable if the equilibria are locaUy asymptotically stable. Some examples are presented to verify our main results. Finally, we give a brief discussion.展开更多
基金Soumitra Pal is thankful to the Council of Scientific and Industrial Research(CSIR),Government of India for providing financial support in the form of senior research fellowship(File No.09/013(0915)/2019-EMR-I).
文摘In this paper,we consider a nonlinear ratio-dependent prey-predator model with constant prey refuge in the prey population.Both Allee and fear phenomena are incorporated explicitly in the growth rate of the prey population.The qualitative behaviors of the proposed model are investigated around the equilibrium points in detail.Hopf bifurcation including its direction and stability for the model is also studied.We observe that fear of predation risk can have both stabilizing and destabilizing effects and induces bubbling phenomenon in the system.It is also observed that for a fixed strength of fear,an increase in the Allee parameter makes the system unstable,whereas an increase in prey refuge drives the system toward stability.However,higher values of both the Allee and prey refuge parameters have negative impacts and the populations go to extinction.Further,we explore the variation of densities of the populations in different bi-parameter spaces,where the coexistence equilibrium point remains stable.Numerical simulations are carried out to explore the dynamical behaviors of the system with the help of MATLAB software.
文摘In an environment,the food chains are balanced by the prey-predator interactions.When a predator species is provided with more than one prey population,it avails the option of prey switching between prey species according to their availability.So,prey switching of predators mainly helps to increase the overall growth rate of a predator species.In this work,we have proposed a two prey-one predator system where the predator population adopts switching behavior between two prey species at the time of consumption.Both the prey population exhibit a strong Allee effect and the predator population is considered to be a generalist one.The proposed system is biologically well-defined as the system variables are positive and do not increase abruptly with time.The local stability analysis reveals that all the predator-free equilibria are saddle points whereas the prey-free equilibrium is always stable.The intrinsic growth rates of prey,the strong Allee parameters,and the prey refuge parameters are chosen to be the controlling parameters here.The numerical simulation reveals that in absence of one prey,the other prey refuge parameter can change the system dynamics by forming a stable or unstable limit cycle.Moreover,a situation of bi-stability,tri-stability,or even multi-stability of equilibrium points occurs in this system.As in presence of the switching effect,the predator chooses prey according to their abundance,so,increasing refuge in one prey population decreases the count of the second prey population.It is also observed that the count of predator population reaches a comparatively higher value even if they get one prey population at its fullest quantity and only a portion of other prey species.So,in the scarcity of one prey species,switching to the other prey is beneficial for the growth of the predator population.
基金supported by MATRICS,Science Engineering Research Board,Government of India(MTR/2020/000477).
文摘This work investigates a prey-predator model featuring a Holling-type II functional response,in which the fear effect of predation on the prey species,as well as prey refuge,are considered.Specifically,the model assumes that the growth rate of the prey population decreases as a result of the fear of predators.Moreover,the detection of the predator by the prey species is subject to a delay known as the fear response delay,which is incorporated into the model.The paper establishes the preliminary conditions for the solution of the delayed model,including positivity,boundedness and permanence.The paper discusses the existence and stability of equilibrium points in the model.In particular,the paper considers the discrete delay as a bifurcation parameter,demonstrating that the system undergoes Hopf bifurcation at a critical value of the delay parameter.The direction and stability of periodic solutions are determined using central manifold and normal form theory.Additionally,the global stability of the model is established at axial and positive equilibrium points.An extensive numerical simulation is presented to validate the analytical findings,including the continuation of the equilibrium branch for positive equilibrium points.
文摘The pattern formation in reaction-diffusion system has long been the subject of interest to the researchers in the domain of mathematical ecology because of its universal exis- tence and importance. The present investigation deals with a spatial dynamics of the Beddington-DeAngelis predator-prey model in the presence of a constant proportion of prey refuge. The model system representing boundary value problem under study is subjected to homogeneous Neumann boundary conditions. The asymptotic stability including the local and the global stability and the bifurcation as well of the unique pos- itive homogeneous steady state of the corresponding temporal model has been analyzed. The Turing instability region in two-parameter space and the condition of diffusion- driven instability of the spatiotemporal model are investigated. Based on the appro- priate numerical simulations, the present model dynamics in Turing space appears to get influenced by prey refuge while it exhibits diffusion-controlled pattern formation growth to spots, stripe-spot mixtures, labyrinthine, stripe-hole mixtures and holes repli- cation. The results obtained appear to enrich the findings of the model system under consideration.
基金Project supported by the Science and Technology Research Fund of Department of Education of Henan Province (12A110012)Ph.D. Programs Foundation of Henan Normal University (1001)Young Foundation of Henan Normal University
文摘In this paper, an infected predator-prey model with prey refuge is investigated. The effects of refuge on the stability of the equilibria of the system are analyzed. Moreover, using the criterion introduced by Liu, we derive the Hopf bifurcation conditions of the system with respect to the refuge value.
基金supported by the Natural Science Foundation of Fujian Province(2015J05006)the foundation of Education Department of Fujian Province(JAT160063)
文摘In this paper, we study a predator-prey model with prey refuge and disease. We study the local asymptotic stability of the equilibriums of the system. Further, we show that the equilibria are globally asymptotically stable if the equilibria are locaUy asymptotically stable. Some examples are presented to verify our main results. Finally, we give a brief discussion.