期刊文献+

Existence of spatiotemporal patterns in the reaction-diffusion predator-prey model incorporating prey refuge 被引量:3

Existence of spatiotemporal patterns in the reaction-diffusion predator-prey model incorporating prey refuge
原文传递
导出
摘要 The pattern formation in reaction-diffusion system has long been the subject of interest to the researchers in the domain of mathematical ecology because of its universal exis- tence and importance. The present investigation deals with a spatial dynamics of the Beddington-DeAngelis predator-prey model in the presence of a constant proportion of prey refuge. The model system representing boundary value problem under study is subjected to homogeneous Neumann boundary conditions. The asymptotic stability including the local and the global stability and the bifurcation as well of the unique pos- itive homogeneous steady state of the corresponding temporal model has been analyzed. The Turing instability region in two-parameter space and the condition of diffusion- driven instability of the spatiotemporal model are investigated. Based on the appro- priate numerical simulations, the present model dynamics in Turing space appears to get influenced by prey refuge while it exhibits diffusion-controlled pattern formation growth to spots, stripe-spot mixtures, labyrinthine, stripe-hole mixtures and holes repli- cation. The results obtained appear to enrich the findings of the model system under consideration.
出处 《International Journal of Biomathematics》 2016年第6期87-111,共25页 生物数学学报(英文版)
关键词 Beddington DeAngelis functional response prey refuge STABILITY reaction-diffusion predator-prey model spatiotemporal pattern. 反应扩散系统 捕食模型 时空模式 避难所 诺伊曼边界条件 空间动力学 全局稳定性 猎物
  • 相关文献

参考文献68

  • 1S. Aly, I. Kim and D. Sheen, Turing instability for a ratio-dependent predator-prey model with diffusion, Appl. Math. Comput. 217 (2011) 7265-7281. 被引量:1
  • 2Y. Astrov, E. Ammelt, S. Teperick and H. G. Purwins, Hexagon and stripe Turing structures in a gas discharge system, Phys. Lett. A 211 (1996) 184-190. 被引量:1
  • 3R. Barrio, P. Maini, J. Arag6n and M. Torres, Size-dependent symmetry breaking in models for morphogenesis, Physica D 168 (2002) 61-72. 被引量:1
  • 4A. D. Bazykin, A. I. Khibnik and B. Krauskopf, Nonlinear Dynamics of Interacting Populations (World Scientific, Singapore, 1998). 被引量:1
  • 5J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol. 44 (1975) 331-340. 被引量:1
  • 6F. Chen, L. Chen and X. Xie, On a Leslie--Gower predator prey mode] incorporating a prey refuge, Nonlinear Anal. Real World Appl. 10 (2009) 2905-2908. 被引量:1
  • 7L. Chen and A. Jiingel, Analysis of a parabolic cross-diffusion semiconductor model with electron-hole scattering, Comm. Partial Differential Equations 32 (2007) 127- 148. 被引量:1
  • 8S. Chen and J. Shi, Global stability in a diffusive Holling-Tanner predator-prey model, Appl. Math. Lett. 25 (2012) 614-618. 被引量:1
  • 9P. H. Crowley and E. K. Martin, Functional responses and interference within and between year classes of a dragonfly population, J. North Amer. Benthol. Soc. 8 (1989) 211-221. 被引量:1
  • 10D. L. DeAngelis, R. A. Goldstein and R. V. O'Neill, A model for tropic interaction, Ecology 56 (1975) 881-892. 被引量:1

同被引文献8

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部