In ghost imaging, an illumination light is split into test and reference beams which pass through two different optical systems respectively and an image is constructed with the second-order correlation between the tw...In ghost imaging, an illumination light is split into test and reference beams which pass through two different optical systems respectively and an image is constructed with the second-order correlation between the two light beams. Since both light beams are diffracted when passing through the optical systems, the spatial resolution of ghost imaging is in general lower than that of a corresponding conventional imaging system. When Gaussian-shaped light spots are used to illuminate an object, randomly scanning across the object plane, in the ghost imaging scheme, we show th√at by localizing central positions of the spots of the reference light beam, the resolution can be increased by a factor of 2^(1/2) same as that of the corresponding conventional imaging system. We also find that the resolution can be further enhanced by setting an appropriate threshold to the bucket measurement of ghost imaging.展开更多
Background: Restoring a viable population by reintroduction is the ultimate goal of a large number of ex situ conservation projects for endangered animals. However, many reintroductions fail to establish a population ...Background: Restoring a viable population by reintroduction is the ultimate goal of a large number of ex situ conservation projects for endangered animals. However, many reintroductions fail to establish a population in the wild, partly because released animals cannot acclimate to the native environment of the release site, resulting in very low survival rates. Acclimation training is a technique to resolve this problem, although it does not have positive results in all species. We tested whether acclimation training and soft-release could improve the reintroduction success for captive-bred Cabot's Tragopan(Tragopan caboti), an endangered pheasant in southern China.Methods: Reintroduction of captive-bred Cabot's Tragopan was carried out in the Taoyuandong National Nature Reserve, China from 2010 to 2011. We built a soft-release enclosure for acclimation training in the typical montane habitat of this pheasant. Nine birds were acclimated to the environment of this release site in this cage for more than 50 days before release("trained birds"), while 11 birds remained only in the cage for 3 days prior to release("untrained birds"). Released birds were tagged with a collar radio-transmitter.Results: Post-release monitoring revealed that the survival rate of trained birds was higher than that of untrained birds after 50 days(trained: 85.7%; untrained: 20.0%). Cox regression analysis showed that there was a significant difference in the mortality rates between the trained and untrained birds. In addition, a survey of the habitat of the experimental and the control groups showed significant differences in habitat selection between the groups.Conclusion: Our study suggests that pre-release acclimatization training is an important factor that can lead to improved survival and habitat selection of captive-bred reintroduced tragopans.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11534008,11605126,and 11804271)the Fund from the Ministry of Science and Technology of China(Grant No.2016YFA0301404)+2 种基金the Natural Science Basic Research Plan in Shaanxi Province,China(Grant No.2017JQ1025)the Doctoral Fund of the Ministry of Education of China(Grant Nos.2016M592772 and 2018M631137)the Fundamental Research Funds for the Central Universities
文摘In ghost imaging, an illumination light is split into test and reference beams which pass through two different optical systems respectively and an image is constructed with the second-order correlation between the two light beams. Since both light beams are diffracted when passing through the optical systems, the spatial resolution of ghost imaging is in general lower than that of a corresponding conventional imaging system. When Gaussian-shaped light spots are used to illuminate an object, randomly scanning across the object plane, in the ghost imaging scheme, we show th√at by localizing central positions of the spots of the reference light beam, the resolution can be increased by a factor of 2^(1/2) same as that of the corresponding conventional imaging system. We also find that the resolution can be further enhanced by setting an appropriate threshold to the bucket measurement of ghost imaging.
基金supported by the State Forestry Administration of China and the National Key Technology R&D Program of China(No.2016YFC0503200)
文摘Background: Restoring a viable population by reintroduction is the ultimate goal of a large number of ex situ conservation projects for endangered animals. However, many reintroductions fail to establish a population in the wild, partly because released animals cannot acclimate to the native environment of the release site, resulting in very low survival rates. Acclimation training is a technique to resolve this problem, although it does not have positive results in all species. We tested whether acclimation training and soft-release could improve the reintroduction success for captive-bred Cabot's Tragopan(Tragopan caboti), an endangered pheasant in southern China.Methods: Reintroduction of captive-bred Cabot's Tragopan was carried out in the Taoyuandong National Nature Reserve, China from 2010 to 2011. We built a soft-release enclosure for acclimation training in the typical montane habitat of this pheasant. Nine birds were acclimated to the environment of this release site in this cage for more than 50 days before release("trained birds"), while 11 birds remained only in the cage for 3 days prior to release("untrained birds"). Released birds were tagged with a collar radio-transmitter.Results: Post-release monitoring revealed that the survival rate of trained birds was higher than that of untrained birds after 50 days(trained: 85.7%; untrained: 20.0%). Cox regression analysis showed that there was a significant difference in the mortality rates between the trained and untrained birds. In addition, a survey of the habitat of the experimental and the control groups showed significant differences in habitat selection between the groups.Conclusion: Our study suggests that pre-release acclimatization training is an important factor that can lead to improved survival and habitat selection of captive-bred reintroduced tragopans.