The research on plasma immersion ion implantation has been conducted for a little over ten years. Much is needed to investigate including processing technlogy, plasma sheath dynamics, interaction of plasma and surface...The research on plasma immersion ion implantation has been conducted for a little over ten years. Much is needed to investigate including processing technlogy, plasma sheath dynamics, interaction of plasma and surface, etc. Of the processing methods elavated temperature technique is usually used in PIII to produce a thick modified layer by means of the thermal diffusion. Meanwhile plasma ion heating is more recently developed by Ronghua Wei et al[1]. Therefore the temeperature is a critical parameter in plasma ion processing. In this paper we present the theoretical model and analysize the effect of imlantation voltage, plasma density, ion mass,etc on the temperature rise.展开更多
Plasma-immersion ion implantation (PIII) is a technique for implanting ions into conducting, semiconducting and insulating objects. In PIII, the object being treated is immersed in a plasma and pulsed to a large negat...Plasma-immersion ion implantation (PIII) is a technique for implanting ions into conducting, semiconducting and insulating objects. In PIII, the object being treated is immersed in a plasma and pulsed to a large negative voltage (=-1 to-100 kV). The resulting sheath expands into the ambient plasma, extracting ions and accelerating them to the target. PIII has advantages over beam-line implantation in that large surfaces can be rapidly implanted, irregularly-shaped objects can be implanted without target manipulation, and surfaces that are not line-of-sight accessible can be treated. A two-dimensional, self-consistent model of plasma dynamics appropriate for PIII is described. The model is a hybrid, with Boltzmann electrons and kinetic ions, where the ion Vlasov equation is solved using the particle-in-cell (PIC) method. Solutions of the model give the time dependence of the ion flux, energy and impact angle at the target surface, together with the evolution of the sheath.展开更多
文摘The research on plasma immersion ion implantation has been conducted for a little over ten years. Much is needed to investigate including processing technlogy, plasma sheath dynamics, interaction of plasma and surface, etc. Of the processing methods elavated temperature technique is usually used in PIII to produce a thick modified layer by means of the thermal diffusion. Meanwhile plasma ion heating is more recently developed by Ronghua Wei et al[1]. Therefore the temeperature is a critical parameter in plasma ion processing. In this paper we present the theoretical model and analysize the effect of imlantation voltage, plasma density, ion mass,etc on the temperature rise.
文摘Plasma-immersion ion implantation (PIII) is a technique for implanting ions into conducting, semiconducting and insulating objects. In PIII, the object being treated is immersed in a plasma and pulsed to a large negative voltage (=-1 to-100 kV). The resulting sheath expands into the ambient plasma, extracting ions and accelerating them to the target. PIII has advantages over beam-line implantation in that large surfaces can be rapidly implanted, irregularly-shaped objects can be implanted without target manipulation, and surfaces that are not line-of-sight accessible can be treated. A two-dimensional, self-consistent model of plasma dynamics appropriate for PIII is described. The model is a hybrid, with Boltzmann electrons and kinetic ions, where the ion Vlasov equation is solved using the particle-in-cell (PIC) method. Solutions of the model give the time dependence of the ion flux, energy and impact angle at the target surface, together with the evolution of the sheath.