The phosphatidylinositol-3 kinase(PI3K) pathway regulates a number of cellular processes, including cell survival, cell growth, and cell cycle progression. Consequently, this pathway is commonly deregulated in cancer....The phosphatidylinositol-3 kinase(PI3K) pathway regulates a number of cellular processes, including cell survival, cell growth, and cell cycle progression. Consequently, this pathway is commonly deregulated in cancer. In particular, mutations in the gene PIK3CA that encodes the p110α catalytic subunit of the PI3K enzymes result in cell proliferation and resistance to apoptosis in vitro and induce breast tumors in transgenic mice. These data underscore the role of this pathway during oncogenesis. Thus, an ongoing, large-scale effort is underway to develop clinically active drugs that target elements of the PI3K pathway. However, conflicting data suggest that gain-of-function PIK3CA mutations may be associated with either a favorable or a poor clinical outcome, compared with the wild-type PIK3CA gene. In the current study, we performed a systematic review of breast cancer clinical studies. Upon evaluation of 2587 breast cancer cases from 12 independent studies, we showed that patients with tumors harboring a PIK3CA mutation have a better clinical outcome than those with a wild-type PIK3CA gene. Importantly, this improved prognosis may pertain only to patients with mutations in the kinase domain of p110α and to postmenopausal women with estrogen receptor-positive breast cancer. We propose three potential explanations for this paradoxical observation. First, PIK3CA mutations may interfere with the metastasis process or may induce senescence, which results in a better outcome for patients with mutated tumors. Secondly, we speculate that PIK3CA mutations may increase early tumor diagnosis by modification of the actin cytoskeleton in tumor cells. Lastly, we propose that PIK3CA mutations may be a favorable predictive factor for response to hormonal therapy, giving a therapeutic advantage to these patients. Ultimately, an improved understanding of the clinical impact of PIK3CA mutations is critical for the development of optimally personalized therapeutics against breast cancer and other solid tumors. This effort will b展开更多
基金supported by the University of Texas-Graduate School of Biomedical Sciences at Houston(A.G.D)the French Association for Research against Cancer(S.N.D)
文摘The phosphatidylinositol-3 kinase(PI3K) pathway regulates a number of cellular processes, including cell survival, cell growth, and cell cycle progression. Consequently, this pathway is commonly deregulated in cancer. In particular, mutations in the gene PIK3CA that encodes the p110α catalytic subunit of the PI3K enzymes result in cell proliferation and resistance to apoptosis in vitro and induce breast tumors in transgenic mice. These data underscore the role of this pathway during oncogenesis. Thus, an ongoing, large-scale effort is underway to develop clinically active drugs that target elements of the PI3K pathway. However, conflicting data suggest that gain-of-function PIK3CA mutations may be associated with either a favorable or a poor clinical outcome, compared with the wild-type PIK3CA gene. In the current study, we performed a systematic review of breast cancer clinical studies. Upon evaluation of 2587 breast cancer cases from 12 independent studies, we showed that patients with tumors harboring a PIK3CA mutation have a better clinical outcome than those with a wild-type PIK3CA gene. Importantly, this improved prognosis may pertain only to patients with mutations in the kinase domain of p110α and to postmenopausal women with estrogen receptor-positive breast cancer. We propose three potential explanations for this paradoxical observation. First, PIK3CA mutations may interfere with the metastasis process or may induce senescence, which results in a better outcome for patients with mutated tumors. Secondly, we speculate that PIK3CA mutations may increase early tumor diagnosis by modification of the actin cytoskeleton in tumor cells. Lastly, we propose that PIK3CA mutations may be a favorable predictive factor for response to hormonal therapy, giving a therapeutic advantage to these patients. Ultimately, an improved understanding of the clinical impact of PIK3CA mutations is critical for the development of optimally personalized therapeutics against breast cancer and other solid tumors. This effort will b