Let {εt; t ∈ Z^+} be a strictly stationary sequence of associated random variables with mean zeros, let 0〈Eε1^2〈∞ and σ^2=Eε1^2+1∑j=2^∞ Eε1εj with 0〈σ^2〈∞.{aj;j∈Z^+} is a sequence of real numbers s...Let {εt; t ∈ Z^+} be a strictly stationary sequence of associated random variables with mean zeros, let 0〈Eε1^2〈∞ and σ^2=Eε1^2+1∑j=2^∞ Eε1εj with 0〈σ^2〈∞.{aj;j∈Z^+} is a sequence of real numbers satisfying ∑j=0^∞|aj|〈∞.Define a linear process Xt=∑j=0^∞ ajεt-j,t≥1,and Sn=∑t=1^n Xt,n≥1.Assume that E|ε1|^2+δ′〈 for some δ′〉0 and μ(n)=O(n^-ρ) for some ρ〉0.This paper achieves a general law of precise asymptotics for {Sn}.展开更多
基金National Natural Science Foundation of China(10571073).
文摘Let {εt; t ∈ Z^+} be a strictly stationary sequence of associated random variables with mean zeros, let 0〈Eε1^2〈∞ and σ^2=Eε1^2+1∑j=2^∞ Eε1εj with 0〈σ^2〈∞.{aj;j∈Z^+} is a sequence of real numbers satisfying ∑j=0^∞|aj|〈∞.Define a linear process Xt=∑j=0^∞ ajεt-j,t≥1,and Sn=∑t=1^n Xt,n≥1.Assume that E|ε1|^2+δ′〈 for some δ′〉0 and μ(n)=O(n^-ρ) for some ρ〉0.This paper achieves a general law of precise asymptotics for {Sn}.
基金The National Natural Science Foundation of China (10871001 61075009)+3 种基金the Provincial Natural Science Research Project of Anhui Colleges (KJ2010A005)the Talents Youth Fund of Anhui Province Universities (2010SQRL016ZD)the Youth Science Research Fund of Anhui University (2009 QN011A)the Innovation Group Foundation of Anhui University (KJTD001B)