AIM: To investigate the single nucleotide polymorphism (SNPs) distribution of NOD2/CARD15 (R702W, G908R), OCTN1 1672CFT and OCTN2-207G/C in Chinese patients with inflammatory bowel disease (IBD). METHODS: A to...AIM: To investigate the single nucleotide polymorphism (SNPs) distribution of NOD2/CARD15 (R702W, G908R), OCTN1 1672CFT and OCTN2-207G/C in Chinese patients with inflammatory bowel disease (IBD). METHODS: A total of 61 patients with Crohn's disease (CD), 151 patients with ulcerative colitis (UC), and 200 unrelated healthy controls were genotyped. Genotyping was performed by sequence specific primer polymerase chain reaction (PCR-SSP) or by restriction fragment length polymorphism (PCR-RFLP) analysis. RESULTS: Among the subjects in our study groups, including patients with CD, UC and healthy controls, none had OCTN and CARD15 variants and very rare IBD family history was found in our patients with the percentage of 0 (0/61 with CD) and 1.3% (2/151 with UC). CONCLUSION: Our results indicate that although OCTN or CARD15 variation is associated with susceptibility to IBD in Western populations, these might be rare and may not be associated with susceptibility to IBD in Chinese patients.展开更多
AIM: To investigate the contribution of variants of CARD15, OCTN1/2 and DLG5 genes in disease predispo- sition and phenotypes in a large Italian cohort of pediatric patients with inflammatory bowel diseases (IBD). MET...AIM: To investigate the contribution of variants of CARD15, OCTN1/2 and DLG5 genes in disease predispo- sition and phenotypes in a large Italian cohort of pediatric patients with inflammatory bowel diseases (IBD). METHODS: Two hundred patients with Crohn’s disease (CD), 186 ulcerative colitis (UC) patients, 434 par- ents (217 trios), and 347 healthy controls (HC) were studied. Polymorphisms of the three major variants of CARD15, 1672C/T and -207G/C SNPs for OCTN genes, IGR2096a_1 and IGR2198a_1 SNPs for the IBD5 locus, and 113G/A variant of the DLG5 gene were evaluated. Potential correlations with clinical sub-phenotypes were investigated. RESULTS: Polymorphisms of CARD15 were significantly associated with CD, and at least one variant was found in 38% of patients (15% in HC, OR = 2.7, P < 0.001). Homozygosis for both OCTN1/2 variants was more com- mon in CD patients (1672TT 24%, -207CC 29%) than in HC (16% and 21%, respectively; P = 0.03), with an in- creased frequency of the TC haplotype (44.8% vs 38.3% in HC, P = 0.04). No association with the DLG5 variant was found. CD carriers of OCTN1/2 and DLG5 variants more frequently had penetrating disease (P = 0.04 and P = 0.01), while carriers of CARD15 more frequently had ileal localization (P = 0.03). No gene-gene interaction was found. In UC patients, the TC haplotype was morefrequent (45.4%, P = 0.03), but no genotype/phenotype correlation was observed. CONCLUSION: Polymorphisms of CARD15 and OCTN genes, but not DLG5 are associated with pediatric on- set of CD. Polymorphisms of CARD15, OCTN, and DLG5 genes exert a weak influence on CD phenotype.展开更多
Various drug transporters are widely expressed throughout the intestine and play important roles in absorbing nutrients and drugs,thus providing high quality targets for the design of prodrugs or nanoparticles to faci...Various drug transporters are widely expressed throughout the intestine and play important roles in absorbing nutrients and drugs,thus providing high quality targets for the design of prodrugs or nanoparticles to facilitate oral drug delivery.In particular,intestinal carnitine/organic cation transporter 2(OCTN2)and mono-carboxylate transporter protein 1(MCT1)possess high transport capacities and complementary distributions.Therefore,we outline recent developments in transporter-targeted oral drug delivery with regard to the OCTN2 and MCT1 proteins in this review.First,basic information of the two transporters is reviewed,including their topological structures,characteristics and functions,expression and key features of their substrates.Furthermore,progress in transporter-targeting prodrugs and nanoparticles to increase oral drug delivery is discussed,including improvements in the oral absorption of anti-inflammatory drugs,antiepileptic drugs and anticancer drugs.Finally,the potential of a dual transporter-targeting strategy is discussed.展开更多
The intestinal epithelium is the main barrier to the oral delivery of poorly water-soluble drugs. Based on the specific transporters expressed on the apical membrane of the intestinal epithelium, novel polymer micelle...The intestinal epithelium is the main barrier to the oral delivery of poorly water-soluble drugs. Based on the specific transporters expressed on the apical membrane of the intestinal epithelium, novel polymer micelles targeting to the organic cation transporter 2(OCTN2) were constructed by combining carnitine conjugated poly(2-ethyl-2-oxazoline)-poly(D,L-lactide)(Car-PEOz-PLA) with monomethoxy poly(ethylene glycol)-poly(D,L-lactide)(mP EG-PLA). The structure of the synthesized Car-PEOz-PLA was confirmed by -1H NMR, TLC and ammonium reineckate precipitation reaction, and the number-average molecular weight determined by GPC was 7260 g/mol with a low PDI of 1.44. Coumarin 6-loaded carnitine modified polymeric micelles prepared by film hydration method were characterized to have a nano-scaled size of about 31 nm in diameter, uniform spherical morphology, high drug loading content of 0.098%±0.03% and encapsulation efficiency of 92.67%±2.80%. Moreover, the carnitine-modified micelles exhibited the similar in vitro release behavior in SGF and SIF, and evidently enhanced intestinal absorption of poorly water-soluble agent. Therefore, the designed OCTN2-targeted micelles might have a promising potential for oral delivery of poorly water-soluble drugs.展开更多
Current study systematically investigated the interaction of two alkaloids, anisodine and monocrotaline, with organic cation transporter OCT1, 2, 3, MATE1 and MATE2-K by using in vitro stably transfected HEK293 cells....Current study systematically investigated the interaction of two alkaloids, anisodine and monocrotaline, with organic cation transporter OCT1, 2, 3, MATE1 and MATE2-K by using in vitro stably transfected HEK293 cells. Both anisodine and monocrotaline inhibited the OCTs and MATE transporters. The lowest IC50 was 12.9 μmol·L-1 of anisodine on OCT1 and the highest was 1.8 mmol·L-1 of monocrotaline on OCT2. Anisodine was a substrate of OCT2(Km = 13.3 ± 2.6 μmol·L-1 and Vmax = 286.8 ± 53.6 pmol/mg protein/min). Monocrotaline was determined to be a substrate of both OCT1(Km = 109.1 ± 17.8 μmol·L^-1, Vmax = 576.5 ± 87.5 pmol/mg protein/min) and OCT2(Km = 64.7 ± 14.8 μmol·L^-1, Vmax = 180.7 ± 22.0 pmol/mg protein/min), other than OCT3 and MATE transporters. The results indicated that OCT2 may be important for renal elimination of anisodine and OCT1 was responsible for monocrotaline uptake into liver. However neither MATE1 nor MATE2-K could facilitate transcellular transport of anisodine and monocrotaline. Accumulation of these drugs in the organs with high OCT1 expression(liver) and OCT2 expression(kidney) may be expected.展开更多
基金Doctoral Natural Science Fund of Guangdong Province, China, No. 04300361
文摘AIM: To investigate the single nucleotide polymorphism (SNPs) distribution of NOD2/CARD15 (R702W, G908R), OCTN1 1672CFT and OCTN2-207G/C in Chinese patients with inflammatory bowel disease (IBD). METHODS: A total of 61 patients with Crohn's disease (CD), 151 patients with ulcerative colitis (UC), and 200 unrelated healthy controls were genotyped. Genotyping was performed by sequence specific primer polymerase chain reaction (PCR-SSP) or by restriction fragment length polymorphism (PCR-RFLP) analysis. RESULTS: Among the subjects in our study groups, including patients with CD, UC and healthy controls, none had OCTN and CARD15 variants and very rare IBD family history was found in our patients with the percentage of 0 (0/61 with CD) and 1.3% (2/151 with UC). CONCLUSION: Our results indicate that although OCTN or CARD15 variation is associated with susceptibility to IBD in Western populations, these might be rare and may not be associated with susceptibility to IBD in Chinese patients.
文摘AIM: To investigate the contribution of variants of CARD15, OCTN1/2 and DLG5 genes in disease predispo- sition and phenotypes in a large Italian cohort of pediatric patients with inflammatory bowel diseases (IBD). METHODS: Two hundred patients with Crohn’s disease (CD), 186 ulcerative colitis (UC) patients, 434 par- ents (217 trios), and 347 healthy controls (HC) were studied. Polymorphisms of the three major variants of CARD15, 1672C/T and -207G/C SNPs for OCTN genes, IGR2096a_1 and IGR2198a_1 SNPs for the IBD5 locus, and 113G/A variant of the DLG5 gene were evaluated. Potential correlations with clinical sub-phenotypes were investigated. RESULTS: Polymorphisms of CARD15 were significantly associated with CD, and at least one variant was found in 38% of patients (15% in HC, OR = 2.7, P < 0.001). Homozygosis for both OCTN1/2 variants was more com- mon in CD patients (1672TT 24%, -207CC 29%) than in HC (16% and 21%, respectively; P = 0.03), with an in- creased frequency of the TC haplotype (44.8% vs 38.3% in HC, P = 0.04). No association with the DLG5 variant was found. CD carriers of OCTN1/2 and DLG5 variants more frequently had penetrating disease (P = 0.04 and P = 0.01), while carriers of CARD15 more frequently had ileal localization (P = 0.03). No gene-gene interaction was found. In UC patients, the TC haplotype was morefrequent (45.4%, P = 0.03), but no genotype/phenotype correlation was observed. CONCLUSION: Polymorphisms of CARD15 and OCTN genes, but not DLG5 are associated with pediatric on- set of CD. Polymorphisms of CARD15, OCTN, and DLG5 genes exert a weak influence on CD phenotype.
基金This work was financially supported by the Natural Science Foundation of Guangxi Province(Nos.2018JJB140325,2018JJB140377)Guangxi Scientific and Technology Base and Talents of Project(Nos.2018AD19035)+2 种基金Talents Project for Cultivating High-level Talent Teams in the Qi Huang Project of Guangxi University of Chinese Medicine(2018002)the specific subject of the dominant discipline construction of Chinese Pharmacy of Guangxi University of Chinese Medicine,Guang Xi Key Laboratory of Translational Medicine for Treating High-incidence Infectious Diseases with Integrative Medicine and School research projects(no.B170021,2018MS003)Scientific Research Projects of Guangxi University of Chinese Medicine(B170021,2018MS003).
文摘Various drug transporters are widely expressed throughout the intestine and play important roles in absorbing nutrients and drugs,thus providing high quality targets for the design of prodrugs or nanoparticles to facilitate oral drug delivery.In particular,intestinal carnitine/organic cation transporter 2(OCTN2)and mono-carboxylate transporter protein 1(MCT1)possess high transport capacities and complementary distributions.Therefore,we outline recent developments in transporter-targeted oral drug delivery with regard to the OCTN2 and MCT1 proteins in this review.First,basic information of the two transporters is reviewed,including their topological structures,characteristics and functions,expression and key features of their substrates.Furthermore,progress in transporter-targeting prodrugs and nanoparticles to increase oral drug delivery is discussed,including improvements in the oral absorption of anti-inflammatory drugs,antiepileptic drugs and anticancer drugs.Finally,the potential of a dual transporter-targeting strategy is discussed.
基金The National Natural Science Foundation of China(Grant No.81673366)the National Key Science Research Program of China(973 Program,Grant No.2015CB932100)
文摘The intestinal epithelium is the main barrier to the oral delivery of poorly water-soluble drugs. Based on the specific transporters expressed on the apical membrane of the intestinal epithelium, novel polymer micelles targeting to the organic cation transporter 2(OCTN2) were constructed by combining carnitine conjugated poly(2-ethyl-2-oxazoline)-poly(D,L-lactide)(Car-PEOz-PLA) with monomethoxy poly(ethylene glycol)-poly(D,L-lactide)(mP EG-PLA). The structure of the synthesized Car-PEOz-PLA was confirmed by -1H NMR, TLC and ammonium reineckate precipitation reaction, and the number-average molecular weight determined by GPC was 7260 g/mol with a low PDI of 1.44. Coumarin 6-loaded carnitine modified polymeric micelles prepared by film hydration method were characterized to have a nano-scaled size of about 31 nm in diameter, uniform spherical morphology, high drug loading content of 0.098%±0.03% and encapsulation efficiency of 92.67%±2.80%. Moreover, the carnitine-modified micelles exhibited the similar in vitro release behavior in SGF and SIF, and evidently enhanced intestinal absorption of poorly water-soluble agent. Therefore, the designed OCTN2-targeted micelles might have a promising potential for oral delivery of poorly water-soluble drugs.
基金supported by the Natural Science Foundation of Guangdong Province(No.2018A0303100026)German Research Foundation(DFG) Grant Clinical Research Group “Genotype-phenotype relationships and neurobiology of the longitudinal course of psychosis” in work package 3(No. BR2471/1-1) and DFG Grant(No. TZ74/1-1)
文摘Current study systematically investigated the interaction of two alkaloids, anisodine and monocrotaline, with organic cation transporter OCT1, 2, 3, MATE1 and MATE2-K by using in vitro stably transfected HEK293 cells. Both anisodine and monocrotaline inhibited the OCTs and MATE transporters. The lowest IC50 was 12.9 μmol·L-1 of anisodine on OCT1 and the highest was 1.8 mmol·L-1 of monocrotaline on OCT2. Anisodine was a substrate of OCT2(Km = 13.3 ± 2.6 μmol·L-1 and Vmax = 286.8 ± 53.6 pmol/mg protein/min). Monocrotaline was determined to be a substrate of both OCT1(Km = 109.1 ± 17.8 μmol·L^-1, Vmax = 576.5 ± 87.5 pmol/mg protein/min) and OCT2(Km = 64.7 ± 14.8 μmol·L^-1, Vmax = 180.7 ± 22.0 pmol/mg protein/min), other than OCT3 and MATE transporters. The results indicated that OCT2 may be important for renal elimination of anisodine and OCT1 was responsible for monocrotaline uptake into liver. However neither MATE1 nor MATE2-K could facilitate transcellular transport of anisodine and monocrotaline. Accumulation of these drugs in the organs with high OCT1 expression(liver) and OCT2 expression(kidney) may be expected.