The technology for beneficiation of banded iron ores containing low iron value is a challenging task due to increasing demand of quality iron ore in India. A flotation process has been developed to treat one such ore,...The technology for beneficiation of banded iron ores containing low iron value is a challenging task due to increasing demand of quality iron ore in India. A flotation process has been developed to treat one such ore, namely banded hematite quartzite (BHQ) containing 41.8wt% Fe and 41.5wt% SiO2,by using oleic acid, methyl isobutyl carbinol (MIBC), and sodium silicate as the collector, frother, and dispersant, respectively. The relative effects of these variables have been evaluated in half-normal plots and Pareto charts using central composite rotatable design. A quadratic response model has been developed for both Fe grade and recovery and optimized within the experimental range. The optimum reagent dosages are found to be as follows: collector concentration of 243.58 g/t, dispersant concentration of 195.67 g/t, pH 8.69, and conditioning time of 4.8 min to achieve the maximum Fe grade of 64.25% with 67.33% recovery. The predictions of the model with regard to iron grade and recovery are in good agreement with the experimental results.展开更多
In this paper, the finger muscular forces were estimated and analyzed through the application of inverse dynamics-based static optimization, and a hand exoskeleton system was designed to pull the fingers and measure t...In this paper, the finger muscular forces were estimated and analyzed through the application of inverse dynamics-based static optimization, and a hand exoskeleton system was designed to pull the fingers and measure the dynamics of the hand. To solve the static optimization, a muscular model of the hand flexors was derived. The experimental protocol was devised to analyze finger flexors in order to evaluate spasticity of the clenched fingers; muscular forces were estimated while the flexed fingers were extended by the exoskeleton with external loads applied. To measure the finger joint angles, the hand exoskeleton system was designed using four-bar linkage structure and potentiometers. In addition, the external loads to the fingertips were generated by cable driven actuators and simultaneously measured by loadcells which were located at each phalanx. The ex- periments were performed with a normal person and the muscular forces estimation results were discussed with reference to the physical phenomena.展开更多
In this paper,we investigate the minimization of age of information(AoI),a metric that measures the information freshness,at the network edge with unreliable wireless communications.Particularly,we consider a set of u...In this paper,we investigate the minimization of age of information(AoI),a metric that measures the information freshness,at the network edge with unreliable wireless communications.Particularly,we consider a set of users transmitting status updates,which are collected by the user randomly over time,to an edge server through unreliable orthogonal channels.It begs a natural question:with random status update arrivals and obscure channel conditions,can we devise an intelligent scheduling policy that matches the users and channels to stabilize the queues of all users while minimizing the average AoI?To give an adequate answer,we define a bipartite graph and formulate a dynamic edge activation problem with stability constraints.Then,we propose an online matching while learning algorithm(MatL)and discuss its implementation for wireless scheduling.Finally,simulation results demonstrate that the MatL is reliable to learn the channel states and manage the users’buffers for fresher information at the edge.展开更多
Evolutionary algorithm is time-consuming because of the large number of evolutions and much times of finite element analysis, when it is used to optimize the wing structure of a certain high altitude long endurance un...Evolutionary algorithm is time-consuming because of the large number of evolutions and much times of finite element analysis, when it is used to optimize the wing structure of a certain high altitude long endurance unmanned aviation vehicle(UAV). In order to improve efficiency it is proposed to construct a model management framework to perform the multi-objective optimization design of wing structure. The sufficient accurate approximation models of objective and constraint functions in the wing structure optimization model are built when using the model management framework, therefore in the evolutionary algorithm a number of finite element analyses can he avoided and the satisfactory multi-objective optimization results of the wing structure of the high altitude long endurance UAV are obtained.展开更多
文摘The technology for beneficiation of banded iron ores containing low iron value is a challenging task due to increasing demand of quality iron ore in India. A flotation process has been developed to treat one such ore, namely banded hematite quartzite (BHQ) containing 41.8wt% Fe and 41.5wt% SiO2,by using oleic acid, methyl isobutyl carbinol (MIBC), and sodium silicate as the collector, frother, and dispersant, respectively. The relative effects of these variables have been evaluated in half-normal plots and Pareto charts using central composite rotatable design. A quadratic response model has been developed for both Fe grade and recovery and optimized within the experimental range. The optimum reagent dosages are found to be as follows: collector concentration of 243.58 g/t, dispersant concentration of 195.67 g/t, pH 8.69, and conditioning time of 4.8 min to achieve the maximum Fe grade of 64.25% with 67.33% recovery. The predictions of the model with regard to iron grade and recovery are in good agreement with the experimental results.
文摘In this paper, the finger muscular forces were estimated and analyzed through the application of inverse dynamics-based static optimization, and a hand exoskeleton system was designed to pull the fingers and measure the dynamics of the hand. To solve the static optimization, a muscular model of the hand flexors was derived. The experimental protocol was devised to analyze finger flexors in order to evaluate spasticity of the clenched fingers; muscular forces were estimated while the flexed fingers were extended by the exoskeleton with external loads applied. To measure the finger joint angles, the hand exoskeleton system was designed using four-bar linkage structure and potentiometers. In addition, the external loads to the fingertips were generated by cable driven actuators and simultaneously measured by loadcells which were located at each phalanx. The ex- periments were performed with a normal person and the muscular forces estimation results were discussed with reference to the physical phenomena.
基金supported in part by Shanghai Pujiang Program under Grant No.21PJ1402600in part by Natural Science Foundation of Chongqing,China under Grant No.CSTB2022NSCQ-MSX0375+4 种基金in part by Song Shan Laboratory Foundation,under Grant No.YYJC022022007in part by Zhejiang Provincial Natural Science Foundation of China under Grant LGJ22F010001in part by National Key Research and Development Program of China under Grant 2020YFA0711301in part by National Natural Science Foundation of China under Grant 61922049。
文摘In this paper,we investigate the minimization of age of information(AoI),a metric that measures the information freshness,at the network edge with unreliable wireless communications.Particularly,we consider a set of users transmitting status updates,which are collected by the user randomly over time,to an edge server through unreliable orthogonal channels.It begs a natural question:with random status update arrivals and obscure channel conditions,can we devise an intelligent scheduling policy that matches the users and channels to stabilize the queues of all users while minimizing the average AoI?To give an adequate answer,we define a bipartite graph and formulate a dynamic edge activation problem with stability constraints.Then,we propose an online matching while learning algorithm(MatL)and discuss its implementation for wireless scheduling.Finally,simulation results demonstrate that the MatL is reliable to learn the channel states and manage the users’buffers for fresher information at the edge.
文摘Evolutionary algorithm is time-consuming because of the large number of evolutions and much times of finite element analysis, when it is used to optimize the wing structure of a certain high altitude long endurance unmanned aviation vehicle(UAV). In order to improve efficiency it is proposed to construct a model management framework to perform the multi-objective optimization design of wing structure. The sufficient accurate approximation models of objective and constraint functions in the wing structure optimization model are built when using the model management framework, therefore in the evolutionary algorithm a number of finite element analyses can he avoided and the satisfactory multi-objective optimization results of the wing structure of the high altitude long endurance UAV are obtained.