Zincophilic property and high electrical conductivity are both very important parameters to design novel Zn anode for aqueous Zn-ion batteries(AZIBs).However,single material is difficult to exhibit zincophilic propert...Zincophilic property and high electrical conductivity are both very important parameters to design novel Zn anode for aqueous Zn-ion batteries(AZIBs).However,single material is difficult to exhibit zincophilic property and high electrical conductivity at the same time.Herein,originating from theoretical calculation,a zincophilic particle regulation strategy is proposed to address these limitations and carbon coated Na_(3)V_(2)(PO_(4))_(3)is taken as an example to be a protective layer on zinc metal(NVPC@Zn).Na_(3)V_(2)(PO_(4))_(3)(NVP)is a common cathode material for Zn-ion batteries,which is zincophilic.Carbon materials not only offer an electron pathway to help Zn deposition onto NVPC surface,but also enhance the zinc nucleophilicity of Na_(3)V_(2)(PO_(4))_(3).Hence,this hybrid coating layer can tune zinc deposition and resist side reactions such as hydrogen generation and Zn metal corrosion.Experimentally,a symmetrical battery with NVPC@Zn electrode displays highly reversible plating/stripping behavior with a long cycle lifespan over 1800 h at2 mA cm^(-2),much better than carbon and Na_(3)V_(2)(PO_(4))_(3)solely modified Zn electrodes.When the Na_(3)V_(2)(PO_(4))_(3)is replaced with zincophobic Al2O3or zincophilic V2O3,the stability of the modified zinc anodes is also prolonged.This strategy expands the option of zincophilic materials and provides a general and effective way to stabilize the Zn electrode.展开更多
Seawater splitting into hydrogen,a promising technology,is seriously limited by the durability and tolerance of electrocatalysts for chlorine ions in seawater at large current densities due to chloride oxidation and c...Seawater splitting into hydrogen,a promising technology,is seriously limited by the durability and tolerance of electrocatalysts for chlorine ions in seawater at large current densities due to chloride oxidation and corrosion.Here,we present a robust and weak-nucleophilicity nickel-iron hydroxide electrocatalyst with excellent selectivity for oxygen evolution and an inert response for chlorine ion oxidation which are key and highly desired for efficient seawater electrolysis.Such a weak-nucleophilicity electrocatalyst can well match with strong-nucleophilicity OH-compared with the weak-nucleophilicity Cl^(-),resultantly,the oxidation of OH-in electrolyte can be more easily achieved relative to chlorine ion oxidation,confirmed by ethylenediaminetetraacetic acid disodium probing test.Further,no strongly corrosive hypochlorite is produced when the operating voltage reaches about 2.1 V vs.RHE,a potential that is far beyond the thermodynamic potential of chlorine ion oxidatio n.This concept and approach to reasonably designing weaknucleophilicity electrocatalysts that can greatly avoid chlorine ion oxidation under alkaline seawater environments can push forward the seawater electrolysis technology and also accelerate the development of green hydrogen technique.展开更多
Polyhedral boranes are a class of well-known boron molecular clusters with unique physical and chemical properties,and great efforts have been made in the past decades to find more effective synthetic methods.However,...Polyhedral boranes are a class of well-known boron molecular clusters with unique physical and chemical properties,and great efforts have been made in the past decades to find more effective synthetic methods.However,the established synthetic methods suffer from low efficiency and low selectivity because the mechanism of the B-H bond condensation reaction,critical for the synthesis of the polyhedral boranes,is not well understood.Here we report highly selective and efficient synthetic methods of the salts of the tetradecahydridoundecaborate(1-)(B_(11)H^(-)_(14)) and dodecahydrido-dodecaborates(2-)(B_(12)H_(12)^(2-)) anions by employing commercially available and inexpensive starting materials.Both theoretical and experimental investigations are carried out to elucidate the reaction mechanisms.We have found that the nature of the B-H bond condensation is the dihydrogen bonding interaction in which the positively charged hydrogens(bridged hydrogens) play a crucial role.The current study has not only led to more effective and selective synthetic methods for B_(11)H^(-)_(14) and B_(12)H_(12)^(2-) but also unveiled the nature of the B-H bond condensation and the general formation mechanisms of polyhedral boranes.This finding will facilitate the development of more effective synthetic methods for polyhedral boranes and spur their wide application.展开更多
The nucleophilic displacement reaction of n-bromooctane and potassium iodide in ionic liquid based on cyclic guanidinium cation(2) was investigated. The kinetic reasult shows that the rate of the reaction is enhanced ...The nucleophilic displacement reaction of n-bromooctane and potassium iodide in ionic liquid based on cyclic guanidinium cation(2) was investigated. The kinetic reasult shows that the rate of the reaction is enhanced in ionic liquid (2). The same reaction in [bmim][PF6](1)(where bmim=1-butyl-3-methylimidazolium) was also studied. It was found that as a reaction medium ionic liquid (2) is better than (1) for nucelophilic displacement reactions.展开更多
A global and local charge transfer partitioning model,based on the cornerstone theory developed by Robert G.Parr and Robert G.Pearson,which introduces two charge transfer channels(one for accepting electrons(electroph...A global and local charge transfer partitioning model,based on the cornerstone theory developed by Robert G.Parr and Robert G.Pearson,which introduces two charge transfer channels(one for accepting electrons(electrophilic) and another for donating(nucleophilic)),is applied to the reaction of a set of indoles with 4,6-dinitrobenzofuroxan.The global analysis indicates that the prevalent electron transfer mechanism in the reaction is a nucleophilic one on the indoles,i.e.,the indoles under consideration transfer electrons to 4,6-dinitrobenzofuroxan.Evaluating the reactivity descriptorswith exchange-correlation functionals including exact exchange(global hybrids) yields slightly better correlations than those obtained with generalized gradient-approximated functionals;however,the trends are preserved.Comparing the trend obtained with the number of electrons donated by the indoles,and predicted by the partitioning model,with that observed experimentally based on the measured rate constants,we propose that the number of electrons transferred through this channel can be used as a nucleophilicity scale to order the reactivity of indoles towards 4,6-dinitrobenzofuroxan.This approach to obtain reactivity scales has the advantage of depending on the intrinsic properties of the two reacting species;therefore,it opens the possibility that the same group of molecules may show different reactivity trends depending on the species with which they are reacting.The local model allows systematic incorporation of the reactive atoms based on the their decreasing condensed Fukui functions,and the correlations obtained by increasing the number of reactive atoms participating in the local analysis of the transferred nucleophilic charge improve,reaching an optimal correlation,which in the present case indicates keeping three atoms from the indoles and two from 4,6-dinitrobenzofuroxan.The atoms selected by this procedure provide valuable information about the local reactivity of the indoles.We further show that this information about the m展开更多
H_(2)S is well-known as a colorless,acidic gas,with a notoriously rotten-egg smell.It was recently revealed that H_(2)S is also an endogenous signaling molecule that has important biological functions,however,most of ...H_(2)S is well-known as a colorless,acidic gas,with a notoriously rotten-egg smell.It was recently revealed that H_(2)S is also an endogenous signaling molecule that has important biological functions,however,most of its physiology and pathology remains elusive.Therefore,the enthusiasm for H_(2)S research remains.Fluorescence imaging technology is an important tool for H_(2)S biology research.The development of fluorescence imaging technology has realized the study of H_(2)S in subcellular organelles,facilitated by the development of fluorescent probes.The probes reviewed in this paper were categorized according to their chemical mechanism of sensing and were divided into three groups:H_(2)S reducibility-based probes,H_(2)S nucleophilicity-based probes,and metal sulfide precipitation-based probes.The structure of the probes,their sensing mechanism,and imaging results have been discussed in detail.Moreover,we also introduced some probes for hydrogen polysulfides.展开更多
High nucleophilicity of formate toward polyhalofluoroalkenes under acidic condition is described. This reaction offers a convenient method for the synthesis of E-α,β-unsaturated polyhalofluorocarboxylic acids.
基金financially supported by the National Key Research and Development Program of China(2022YFB3803600)the Fundamental Research Funds for the Central Universities(30106200463 and CCNU22CJ017)+1 种基金the National Natural Science Foundation of China(U20A20246)the Graduate Education Innovation Grant from Central China Normal University,China(20210407032)。
文摘Zincophilic property and high electrical conductivity are both very important parameters to design novel Zn anode for aqueous Zn-ion batteries(AZIBs).However,single material is difficult to exhibit zincophilic property and high electrical conductivity at the same time.Herein,originating from theoretical calculation,a zincophilic particle regulation strategy is proposed to address these limitations and carbon coated Na_(3)V_(2)(PO_(4))_(3)is taken as an example to be a protective layer on zinc metal(NVPC@Zn).Na_(3)V_(2)(PO_(4))_(3)(NVP)is a common cathode material for Zn-ion batteries,which is zincophilic.Carbon materials not only offer an electron pathway to help Zn deposition onto NVPC surface,but also enhance the zinc nucleophilicity of Na_(3)V_(2)(PO_(4))_(3).Hence,this hybrid coating layer can tune zinc deposition and resist side reactions such as hydrogen generation and Zn metal corrosion.Experimentally,a symmetrical battery with NVPC@Zn electrode displays highly reversible plating/stripping behavior with a long cycle lifespan over 1800 h at2 mA cm^(-2),much better than carbon and Na_(3)V_(2)(PO_(4))_(3)solely modified Zn electrodes.When the Na_(3)V_(2)(PO_(4))_(3)is replaced with zincophobic Al2O3or zincophilic V2O3,the stability of the modified zinc anodes is also prolonged.This strategy expands the option of zincophilic materials and provides a general and effective way to stabilize the Zn electrode.
基金supported by the National Natural Science Foundation of China(NSFC,No.22078052)the Fundamental Research Funds for the Central Universities(DUT22ZD207,DUT22LAB612)。
文摘Seawater splitting into hydrogen,a promising technology,is seriously limited by the durability and tolerance of electrocatalysts for chlorine ions in seawater at large current densities due to chloride oxidation and corrosion.Here,we present a robust and weak-nucleophilicity nickel-iron hydroxide electrocatalyst with excellent selectivity for oxygen evolution and an inert response for chlorine ion oxidation which are key and highly desired for efficient seawater electrolysis.Such a weak-nucleophilicity electrocatalyst can well match with strong-nucleophilicity OH-compared with the weak-nucleophilicity Cl^(-),resultantly,the oxidation of OH-in electrolyte can be more easily achieved relative to chlorine ion oxidation,confirmed by ethylenediaminetetraacetic acid disodium probing test.Further,no strongly corrosive hypochlorite is produced when the operating voltage reaches about 2.1 V vs.RHE,a potential that is far beyond the thermodynamic potential of chlorine ion oxidatio n.This concept and approach to reasonably designing weaknucleophilicity electrocatalysts that can greatly avoid chlorine ion oxidation under alkaline seawater environments can push forward the seawater electrolysis technology and also accelerate the development of green hydrogen technique.
基金supported by the National Natural Science Foundation of China(22171246,U1804253 to X.C.and 21773214 to D.W.)the National Science Foundation(CHE-2053541 to L.-S.W.)。
文摘Polyhedral boranes are a class of well-known boron molecular clusters with unique physical and chemical properties,and great efforts have been made in the past decades to find more effective synthetic methods.However,the established synthetic methods suffer from low efficiency and low selectivity because the mechanism of the B-H bond condensation reaction,critical for the synthesis of the polyhedral boranes,is not well understood.Here we report highly selective and efficient synthetic methods of the salts of the tetradecahydridoundecaborate(1-)(B_(11)H^(-)_(14)) and dodecahydrido-dodecaborates(2-)(B_(12)H_(12)^(2-)) anions by employing commercially available and inexpensive starting materials.Both theoretical and experimental investigations are carried out to elucidate the reaction mechanisms.We have found that the nature of the B-H bond condensation is the dihydrogen bonding interaction in which the positively charged hydrogens(bridged hydrogens) play a crucial role.The current study has not only led to more effective and selective synthetic methods for B_(11)H^(-)_(14) and B_(12)H_(12)^(2-) but also unveiled the nature of the B-H bond condensation and the general formation mechanisms of polyhedral boranes.This finding will facilitate the development of more effective synthetic methods for polyhedral boranes and spur their wide application.
文摘The nucleophilic displacement reaction of n-bromooctane and potassium iodide in ionic liquid based on cyclic guanidinium cation(2) was investigated. The kinetic reasult shows that the rate of the reaction is enhanced in ionic liquid (2). The same reaction in [bmim][PF6](1)(where bmim=1-butyl-3-methylimidazolium) was also studied. It was found that as a reaction medium ionic liquid (2) is better than (1) for nucelophilic displacement reactions.
基金UOV was supported in part by Conacyt through a doctoral fellowship. JLG thanks Conacyt for grant 237045, and AV thanks Conacyt for grant Fronteras 867.
文摘A global and local charge transfer partitioning model,based on the cornerstone theory developed by Robert G.Parr and Robert G.Pearson,which introduces two charge transfer channels(one for accepting electrons(electrophilic) and another for donating(nucleophilic)),is applied to the reaction of a set of indoles with 4,6-dinitrobenzofuroxan.The global analysis indicates that the prevalent electron transfer mechanism in the reaction is a nucleophilic one on the indoles,i.e.,the indoles under consideration transfer electrons to 4,6-dinitrobenzofuroxan.Evaluating the reactivity descriptorswith exchange-correlation functionals including exact exchange(global hybrids) yields slightly better correlations than those obtained with generalized gradient-approximated functionals;however,the trends are preserved.Comparing the trend obtained with the number of electrons donated by the indoles,and predicted by the partitioning model,with that observed experimentally based on the measured rate constants,we propose that the number of electrons transferred through this channel can be used as a nucleophilicity scale to order the reactivity of indoles towards 4,6-dinitrobenzofuroxan.This approach to obtain reactivity scales has the advantage of depending on the intrinsic properties of the two reacting species;therefore,it opens the possibility that the same group of molecules may show different reactivity trends depending on the species with which they are reacting.The local model allows systematic incorporation of the reactive atoms based on the their decreasing condensed Fukui functions,and the correlations obtained by increasing the number of reactive atoms participating in the local analysis of the transferred nucleophilic charge improve,reaching an optimal correlation,which in the present case indicates keeping three atoms from the indoles and two from 4,6-dinitrobenzofuroxan.The atoms selected by this procedure provide valuable information about the local reactivity of the indoles.We further show that this information about the m
基金supported by the Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China(Xiang Tong Jiao[2012]318)Hunan Provincial Natural Science Foundation,China(12JJ2029)+2 种基金Aid Program for Science and Technology Innovative Research Team in Higher Educational Institutions of Hunan Province,China(12K030)Scientific Research Fund of Changde Municipal Science and Technology Bureau,Hunan Province,China(2014JF15)Provincial Science and Technology Project,China(2013FJ4220)~~
基金supported by China Postdoctoral Science Foundation(Grant No.2019M652053).
文摘H_(2)S is well-known as a colorless,acidic gas,with a notoriously rotten-egg smell.It was recently revealed that H_(2)S is also an endogenous signaling molecule that has important biological functions,however,most of its physiology and pathology remains elusive.Therefore,the enthusiasm for H_(2)S research remains.Fluorescence imaging technology is an important tool for H_(2)S biology research.The development of fluorescence imaging technology has realized the study of H_(2)S in subcellular organelles,facilitated by the development of fluorescent probes.The probes reviewed in this paper were categorized according to their chemical mechanism of sensing and were divided into three groups:H_(2)S reducibility-based probes,H_(2)S nucleophilicity-based probes,and metal sulfide precipitation-based probes.The structure of the probes,their sensing mechanism,and imaging results have been discussed in detail.Moreover,we also introduced some probes for hydrogen polysulfides.
文摘 High nucleophilicity of formate toward polyhalofluoroalkenes under acidic condition is described. This reaction offers a convenient method for the synthesis of E-α,β-unsaturated polyhalofluorocarboxylic acids.