运用WRF模式(Weather Research and Forecasting Model,天气研究和预报模式)和WRFDA同化(WRF Data Assimilation,WRF资料同化)系统,探究采用物理滤波初始化四维变分同化方法提高数值预报在临近预报时效的预报能力的可能性。通过采用12 ...运用WRF模式(Weather Research and Forecasting Model,天气研究和预报模式)和WRFDA同化(WRF Data Assimilation,WRF资料同化)系统,探究采用物理滤波初始化四维变分同化方法提高数值预报在临近预报时效的预报能力的可能性。通过采用12 min同化窗,在不显著增加计算量的情况下,得到更协调的模式初始场,从而提高模式预报能力。选取2018年8月华北地区17个降水个例进行研究,结果表明:采用物理滤波初始化四维变分同化技术能够明显改进模式短时临近降水预报能力,明显提高对大量级降水预报的ETS评分,6 h累积降水大于25.0 mm量级的ETS评分由0.125提高到0.190,且6 h累积降水大于60.0 mm量级的ETS评分由0.016提高到0.081。研究还表明:同化雷达风场通过改进初始动力场使次网格尺度降水过程(积云参数化)快速响应,可提高短时临近时段的降水预报能力。展开更多
文摘运用WRF模式(Weather Research and Forecasting Model,天气研究和预报模式)和WRFDA同化(WRF Data Assimilation,WRF资料同化)系统,探究采用物理滤波初始化四维变分同化方法提高数值预报在临近预报时效的预报能力的可能性。通过采用12 min同化窗,在不显著增加计算量的情况下,得到更协调的模式初始场,从而提高模式预报能力。选取2018年8月华北地区17个降水个例进行研究,结果表明:采用物理滤波初始化四维变分同化技术能够明显改进模式短时临近降水预报能力,明显提高对大量级降水预报的ETS评分,6 h累积降水大于25.0 mm量级的ETS评分由0.125提高到0.190,且6 h累积降水大于60.0 mm量级的ETS评分由0.016提高到0.081。研究还表明:同化雷达风场通过改进初始动力场使次网格尺度降水过程(积云参数化)快速响应,可提高短时临近时段的降水预报能力。