This paper presents an extensive survey of the most commonly used tools for diagnosing unbalanced flow in the atmosphere, namely the Lagrangian Rossby number, Psi vector, divergence equation, nonlinear balance equatio...This paper presents an extensive survey of the most commonly used tools for diagnosing unbalanced flow in the atmosphere, namely the Lagrangian Rossby number, Psi vector, divergence equation, nonlinear balance equation, generalized omega-equation, and departure from fields obtained by potential vorticity (PV) inversion. The basic thoery, assumptions as well as implementation and limitations for each of the tools are all discussed. These tools are applied to high—resolution mesoscale model data to assess the role of unbalanced dynamics in the generation of a mesoscale gravity wave event over the East Coast of the United States. Comparison of these tools in this case study shows that these various methods agree to a large extent with each other though they differ in details. Key words Unbalanced flow - Geostrophic adjustment - Gravity waves - Nonlinear balance equation - Potential vorticity inversion - Omega equations - Rossby number This research was conducted under support from NSF grant ATM-9700626 of the United States. The numerical computations described herein were performed on the Cray T90 at the North Carolina Supercomputing Center and the Cray supercomputer at the NCAR Scientific Computing Division, which also provided the initialization fields for the MM5. Thanks are extended to Mark Stoelinga at University of Washington for the RIP post-processing package.展开更多
通用变量含误差(errors-in-variables, EIV)模型将EIV模型扩展至最一般化的形式,其加权整体最小二乘算法(weighted total least squares, WTLS)同时顾及观测向量、观测向量的系数矩阵和参数向量的系数矩阵中的随机误差。将通用EIV函数...通用变量含误差(errors-in-variables, EIV)模型将EIV模型扩展至最一般化的形式,其加权整体最小二乘算法(weighted total least squares, WTLS)同时顾及观测向量、观测向量的系数矩阵和参数向量的系数矩阵中的随机误差。将通用EIV函数模型展开,将二阶项纳入模型的常数项,从而将非线性的通用EIV模型表示为线性的高斯-赫尔默特模型,推导出通用EIV模型的线性化整体最小二乘(linearized total least squares,LTLS)算法和近似精度估计公式。通过模拟数据和实例评估分析可知,LTLS算法与通用EIV模型的WTLS算法估计结果一致,验证了算法的正确性和可行性。当模型含大量估计量时,通用EIV模型的LTLS算法显著提升了计算效率,收敛速度更快。展开更多
文摘This paper presents an extensive survey of the most commonly used tools for diagnosing unbalanced flow in the atmosphere, namely the Lagrangian Rossby number, Psi vector, divergence equation, nonlinear balance equation, generalized omega-equation, and departure from fields obtained by potential vorticity (PV) inversion. The basic thoery, assumptions as well as implementation and limitations for each of the tools are all discussed. These tools are applied to high—resolution mesoscale model data to assess the role of unbalanced dynamics in the generation of a mesoscale gravity wave event over the East Coast of the United States. Comparison of these tools in this case study shows that these various methods agree to a large extent with each other though they differ in details. Key words Unbalanced flow - Geostrophic adjustment - Gravity waves - Nonlinear balance equation - Potential vorticity inversion - Omega equations - Rossby number This research was conducted under support from NSF grant ATM-9700626 of the United States. The numerical computations described herein were performed on the Cray T90 at the North Carolina Supercomputing Center and the Cray supercomputer at the NCAR Scientific Computing Division, which also provided the initialization fields for the MM5. Thanks are extended to Mark Stoelinga at University of Washington for the RIP post-processing package.
文摘通用变量含误差(errors-in-variables, EIV)模型将EIV模型扩展至最一般化的形式,其加权整体最小二乘算法(weighted total least squares, WTLS)同时顾及观测向量、观测向量的系数矩阵和参数向量的系数矩阵中的随机误差。将通用EIV函数模型展开,将二阶项纳入模型的常数项,从而将非线性的通用EIV模型表示为线性的高斯-赫尔默特模型,推导出通用EIV模型的线性化整体最小二乘(linearized total least squares,LTLS)算法和近似精度估计公式。通过模拟数据和实例评估分析可知,LTLS算法与通用EIV模型的WTLS算法估计结果一致,验证了算法的正确性和可行性。当模型含大量估计量时,通用EIV模型的LTLS算法显著提升了计算效率,收敛速度更快。