针对常用锥面载体的单曲率特性,结合合理的阵元布局和利用非圆信号非零椭圆协方差特性,提出一种锥面共形阵列天线非圆信号盲极化二维波达方向(two dimensional-direction of arrival,2D-DOA)估计方法。该方法基于非圆-旋转不变子空间(no...针对常用锥面载体的单曲率特性,结合合理的阵元布局和利用非圆信号非零椭圆协方差特性,提出一种锥面共形阵列天线非圆信号盲极化二维波达方向(two dimensional-direction of arrival,2D-DOA)估计方法。该方法基于非圆-旋转不变子空间(non-circular estimation of signal parameters via rotation invariant technique,NC-ESPRIT),充分利用非圆信号的阵列扩展性,将DOA与极化参数去耦合,在此基础上,对俯仰与方位角度参数分维处理,在未知极化参数的情况下,实现了2D的分维估计。针对相干源情况,推导了锥面共形阵列非圆信号解相干空间平滑算法,通过解相干预处理,保证了所提算法对相干信号的适用性,扩展了算法的应用范围。计算机仿真实验表明,所提方法在信噪比较低(小于10dB)时,较之已有算法大大提升了DOA估计精度,达到了较好的效果。展开更多
SWEDE(subspace method without eigendecomposition)算法是一种不需要协方差阵分解的波达方向估计算法。该方法能降低传统超分辨算法的计算量和复杂度,但也同时降低了均匀线性阵的可测最大信号数。本文基于非圆信号具有椭圆协方差矩阵...SWEDE(subspace method without eigendecomposition)算法是一种不需要协方差阵分解的波达方向估计算法。该方法能降低传统超分辨算法的计算量和复杂度,但也同时降低了均匀线性阵的可测最大信号数。本文基于非圆信号具有椭圆协方差矩阵不为零的特征,并结合SWEDE算法的基本思想,提出了一种改进SWEDE算法:NC-SWEDE算法。该算法利用最大非圆率信号的增维数据模型,相当于将线性阵的可利用阵元数加倍,因而提高了SWEDE算法可测的最大信源数,并提高了算法的分辨力和估计精度。由于引入了非圆信号的相位参数,该算法需要进行二维谱峰搜索,本文采用求极值方法达到了降维的目的。本文分别进行了NC-SWEDE算法最大可分辨信号数、不同D矩阵取法下的算法性能及与传统SWEDE算法性能比较的仿真实验,结果验证了该算法的优越性。展开更多
针对极化敏感阵列参数估计过程中需要奇异值和特征值分解,以及低信噪比下估计误差偏大的问题,提出基于传播算子的二维旋转不变子空间(estimation of signal parameters via rotational invariance technique,ESPRIT)算法,改进算法引入...针对极化敏感阵列参数估计过程中需要奇异值和特征值分解,以及低信噪比下估计误差偏大的问题,提出基于传播算子的二维旋转不变子空间(estimation of signal parameters via rotational invariance technique,ESPRIT)算法,改进算法引入非圆信号共轭相关统计信息构造一组新的接收数据,将这组新数据与真实数据重构组合求得噪声子空间;采用ESPRIT算法将信号子空间分块得到旋转不变因子,无须特征值分解和谱峰搜索,实现信号空间到达角(direction of arrival,DOA)和极化角的精确估计.所提算法在参数估计性能上要优于经典算法,在低信噪比情况下均方误差较小,并且可降低计算量,最后由Matlab仿真验证所提算法的有效性.展开更多
针对传统互质阵列波达方向估计方法存在的自由度低、阵列孔径小、相位模糊等问题,提出了一种基于互质MIMO雷达的非圆信号降维波达方向(Direction of Arrival, DOA)估计方法。该方法结合了互质阵列与MIMO雷达的优点,利用非圆信号特性对...针对传统互质阵列波达方向估计方法存在的自由度低、阵列孔径小、相位模糊等问题,提出了一种基于互质MIMO雷达的非圆信号降维波达方向(Direction of Arrival, DOA)估计方法。该方法结合了互质阵列与MIMO雷达的优点,利用非圆信号特性对阵列进行扩展,重构接收信号矩阵,然后进行降维处理,并利用噪声特征值的幂级数对噪声子空间进行修正,进一步提高算法精度。最后推导了文中方法的无相位模糊问题。仿真实验表明,文中方法能够有效避免相位模糊,大大提高自由度并扩大阵列孔径,与传统MUSIC算法以及互质阵列MUSIC算法相比,在估计成功率、DOA估计精度等方面均具有更好的性能。展开更多
基于阵列观测站的目标定位易受阵列误差的影响。针对方位依赖幅相误差影响下的定位问题,提出了一种利用辅助阵元(Instrumental Sensor,IS)自校正的非圆信号多站直接定位(Direct Position Determination,DPD)算法。该算法利用辅助阵元校...基于阵列观测站的目标定位易受阵列误差的影响。针对方位依赖幅相误差影响下的定位问题,提出了一种利用辅助阵元(Instrumental Sensor,IS)自校正的非圆信号多站直接定位(Direct Position Determination,DPD)算法。该算法利用辅助阵元校正方位依赖的阵列幅相误差,结合信号的非圆特性扩展数据模型,基于扩展子空间数据融合准则直接实现多目标位置参数与多站阵列误差参数的解耦估计,避免了传统两步定位方法的测向与数据关联步骤。仿真结果表明,该算法较传统的两步定位方法与未考虑阵列误差的直接定位算法均具有更高的定位精度,尤其在低信噪比与目标距离较近时优势更加明显。展开更多
文摘针对常用锥面载体的单曲率特性,结合合理的阵元布局和利用非圆信号非零椭圆协方差特性,提出一种锥面共形阵列天线非圆信号盲极化二维波达方向(two dimensional-direction of arrival,2D-DOA)估计方法。该方法基于非圆-旋转不变子空间(non-circular estimation of signal parameters via rotation invariant technique,NC-ESPRIT),充分利用非圆信号的阵列扩展性,将DOA与极化参数去耦合,在此基础上,对俯仰与方位角度参数分维处理,在未知极化参数的情况下,实现了2D的分维估计。针对相干源情况,推导了锥面共形阵列非圆信号解相干空间平滑算法,通过解相干预处理,保证了所提算法对相干信号的适用性,扩展了算法的应用范围。计算机仿真实验表明,所提方法在信噪比较低(小于10dB)时,较之已有算法大大提升了DOA估计精度,达到了较好的效果。
文摘SWEDE(subspace method without eigendecomposition)算法是一种不需要协方差阵分解的波达方向估计算法。该方法能降低传统超分辨算法的计算量和复杂度,但也同时降低了均匀线性阵的可测最大信号数。本文基于非圆信号具有椭圆协方差矩阵不为零的特征,并结合SWEDE算法的基本思想,提出了一种改进SWEDE算法:NC-SWEDE算法。该算法利用最大非圆率信号的增维数据模型,相当于将线性阵的可利用阵元数加倍,因而提高了SWEDE算法可测的最大信源数,并提高了算法的分辨力和估计精度。由于引入了非圆信号的相位参数,该算法需要进行二维谱峰搜索,本文采用求极值方法达到了降维的目的。本文分别进行了NC-SWEDE算法最大可分辨信号数、不同D矩阵取法下的算法性能及与传统SWEDE算法性能比较的仿真实验,结果验证了该算法的优越性。
文摘针对极化敏感阵列参数估计过程中需要奇异值和特征值分解,以及低信噪比下估计误差偏大的问题,提出基于传播算子的二维旋转不变子空间(estimation of signal parameters via rotational invariance technique,ESPRIT)算法,改进算法引入非圆信号共轭相关统计信息构造一组新的接收数据,将这组新数据与真实数据重构组合求得噪声子空间;采用ESPRIT算法将信号子空间分块得到旋转不变因子,无须特征值分解和谱峰搜索,实现信号空间到达角(direction of arrival,DOA)和极化角的精确估计.所提算法在参数估计性能上要优于经典算法,在低信噪比情况下均方误差较小,并且可降低计算量,最后由Matlab仿真验证所提算法的有效性.
文摘针对传统互质阵列波达方向估计方法存在的自由度低、阵列孔径小、相位模糊等问题,提出了一种基于互质MIMO雷达的非圆信号降维波达方向(Direction of Arrival, DOA)估计方法。该方法结合了互质阵列与MIMO雷达的优点,利用非圆信号特性对阵列进行扩展,重构接收信号矩阵,然后进行降维处理,并利用噪声特征值的幂级数对噪声子空间进行修正,进一步提高算法精度。最后推导了文中方法的无相位模糊问题。仿真实验表明,文中方法能够有效避免相位模糊,大大提高自由度并扩大阵列孔径,与传统MUSIC算法以及互质阵列MUSIC算法相比,在估计成功率、DOA估计精度等方面均具有更好的性能。
文摘基于阵列观测站的目标定位易受阵列误差的影响。针对方位依赖幅相误差影响下的定位问题,提出了一种利用辅助阵元(Instrumental Sensor,IS)自校正的非圆信号多站直接定位(Direct Position Determination,DPD)算法。该算法利用辅助阵元校正方位依赖的阵列幅相误差,结合信号的非圆特性扩展数据模型,基于扩展子空间数据融合准则直接实现多目标位置参数与多站阵列误差参数的解耦估计,避免了传统两步定位方法的测向与数据关联步骤。仿真结果表明,该算法较传统的两步定位方法与未考虑阵列误差的直接定位算法均具有更高的定位精度,尤其在低信噪比与目标距离较近时优势更加明显。