Synapses are specialized structures that mediate information flow between neurons and target cells,and thus are the basis for neuronal system to execute various functions,including learning and memory.There are around...Synapses are specialized structures that mediate information flow between neurons and target cells,and thus are the basis for neuronal system to execute various functions,including learning and memory.There are around 1011 neurons in the human brain,with each neuron receiving thousands of synaptic inputs,either excitatory or inhibitory.A synapse is an asymmetric structure that is composed of pre-synaptic axon terminals,synaptic cleft,and postsynaptic compartments.Synapse formation involves a number of cell adhesion molecules,extracellular factors,and intracellular signaling or structural proteins.After the establishment of synaptic connections,synapses undergo structural or functional changes,known as synaptic plasticity which is believed to be regulated by neuronal activity and a variety of secreted factors.This review summarizes recent progress in the field of synapse development,with particular emphasis on the work carried out in China during the past 10 years(1999-2009).展开更多
MicroRNAs play important roles in post-transcriptional regulation of gene expression by inhibiting protein translation and/or promoting mRNA degradation.Importantly,biogenesis of microRNAs displays specific temporal a...MicroRNAs play important roles in post-transcriptional regulation of gene expression by inhibiting protein translation and/or promoting mRNA degradation.Importantly,biogenesis of microRNAs displays specific temporal and spatial profiles in distinct cell and tissue types and hence affects a broad spectrum of biological functions in normal cell growth and tumor development.Recent discoveries have revealed sophisticated mechanisms that control microRNA production and homeostasis in response to developmental and extracellular signals.Moreover,a link between dysregulation of microRNAs and human brain disorders has become increasingly evident.In this review,we focus on recent advances in understanding the regulation of microRNA biogenesis and function in neuronal and glial development in the mammalian brain,and dysregulation of the microRNA pathway in neurodevelopmental and neurodegenerative diseases.展开更多
Constraint-induced movement therapy is an effective rehabilitative training technique used to improve the restoration of impaired upper extremity movement after stroke. However, whether constraint-induced movement the...Constraint-induced movement therapy is an effective rehabilitative training technique used to improve the restoration of impaired upper extremity movement after stroke. However, whether constraint-induced movement therapy is more effective than conventional rehabilitation in acute or sub-acute stroke remains controversial. The aim of the present study was to identify the optimal time to start constraint-induced movement therapy after ischemic stroke and to explore the mechanisms by which constraint-induced movement therapy leads to post-stroke recovery. Sixty-four adult male Sprague-Dawley rats were randomly divided into four groups: sham-surgery group, cerebral ischemia/reperfusion group, early constraint-induced movement therapy group, and late constraint-induced movement therapy group. Rat models of left middle cerebral artery occlusion were established according to the Zea Longa line embolism method. Constraint-induced movement therapy was conducted starting on day 1 or day 14 in the early constraint-induced movement therapy and late constraint-induced movement therapy groups, respectively. To explore the effect of each intervention time on neuromotor function, behavioral function was assessed using a balance beam walking test before surgery and at 8 and 21 days after surgery. The expression levels of brain-derived neurotrophic factor, nerve growth factor and Nogo receptor were evaluated using real time-polymerase chain reaction and western blot assay to assess the effect of each intervention time. The results showed that the behavioral score was significantly lower in the early constraint-induced movement therapy group than in the cerebral ischemia/reperfusion and late constraint-induced movement therapy groups at 8 days. At 21 days, the scores had significantly decreased in the early constraint-induced movement therapy and late constraint-induced movement therapy groups. At 8 days, only mild pyknosis appeared in neurons of the ischemic penumbra in the early constraint-induced movement therapy group, which w展开更多
Despite intense research efforts, the specific pathogenic mechanisms that underlie the link between respiratory syncytial virus (RSV) and childhood asthma remain unclear. Recent researches suggest that changes in th...Despite intense research efforts, the specific pathogenic mechanisms that underlie the link between respiratory syncytial virus (RSV) and childhood asthma remain unclear. Recent researches suggest that changes in the structure and function of the nerves themselves in response to changing conditions, a phenomenon known as neuronal plasticity, may also contribute to the pathophysiology of airway diseases. Therefore.展开更多
文摘Synapses are specialized structures that mediate information flow between neurons and target cells,and thus are the basis for neuronal system to execute various functions,including learning and memory.There are around 1011 neurons in the human brain,with each neuron receiving thousands of synaptic inputs,either excitatory or inhibitory.A synapse is an asymmetric structure that is composed of pre-synaptic axon terminals,synaptic cleft,and postsynaptic compartments.Synapse formation involves a number of cell adhesion molecules,extracellular factors,and intracellular signaling or structural proteins.After the establishment of synaptic connections,synapses undergo structural or functional changes,known as synaptic plasticity which is believed to be regulated by neuronal activity and a variety of secreted factors.This review summarizes recent progress in the field of synapse development,with particular emphasis on the work carried out in China during the past 10 years(1999-2009).
文摘MicroRNAs play important roles in post-transcriptional regulation of gene expression by inhibiting protein translation and/or promoting mRNA degradation.Importantly,biogenesis of microRNAs displays specific temporal and spatial profiles in distinct cell and tissue types and hence affects a broad spectrum of biological functions in normal cell growth and tumor development.Recent discoveries have revealed sophisticated mechanisms that control microRNA production and homeostasis in response to developmental and extracellular signals.Moreover,a link between dysregulation of microRNAs and human brain disorders has become increasingly evident.In this review,we focus on recent advances in understanding the regulation of microRNA biogenesis and function in neuronal and glial development in the mammalian brain,and dysregulation of the microRNA pathway in neurodevelopmental and neurodegenerative diseases.
基金supported by the Natural Science Foundation of Shandong Province of China,No.2014ZRB14502(to XHL)
文摘Constraint-induced movement therapy is an effective rehabilitative training technique used to improve the restoration of impaired upper extremity movement after stroke. However, whether constraint-induced movement therapy is more effective than conventional rehabilitation in acute or sub-acute stroke remains controversial. The aim of the present study was to identify the optimal time to start constraint-induced movement therapy after ischemic stroke and to explore the mechanisms by which constraint-induced movement therapy leads to post-stroke recovery. Sixty-four adult male Sprague-Dawley rats were randomly divided into four groups: sham-surgery group, cerebral ischemia/reperfusion group, early constraint-induced movement therapy group, and late constraint-induced movement therapy group. Rat models of left middle cerebral artery occlusion were established according to the Zea Longa line embolism method. Constraint-induced movement therapy was conducted starting on day 1 or day 14 in the early constraint-induced movement therapy and late constraint-induced movement therapy groups, respectively. To explore the effect of each intervention time on neuromotor function, behavioral function was assessed using a balance beam walking test before surgery and at 8 and 21 days after surgery. The expression levels of brain-derived neurotrophic factor, nerve growth factor and Nogo receptor were evaluated using real time-polymerase chain reaction and western blot assay to assess the effect of each intervention time. The results showed that the behavioral score was significantly lower in the early constraint-induced movement therapy group than in the cerebral ischemia/reperfusion and late constraint-induced movement therapy groups at 8 days. At 21 days, the scores had significantly decreased in the early constraint-induced movement therapy and late constraint-induced movement therapy groups. At 8 days, only mild pyknosis appeared in neurons of the ischemic penumbra in the early constraint-induced movement therapy group, which w
基金This work was supported by the National Natural Science Foundation of China (No.30470756).
文摘Despite intense research efforts, the specific pathogenic mechanisms that underlie the link between respiratory syncytial virus (RSV) and childhood asthma remain unclear. Recent researches suggest that changes in the structure and function of the nerves themselves in response to changing conditions, a phenomenon known as neuronal plasticity, may also contribute to the pathophysiology of airway diseases. Therefore.