This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. We investigate the dissipativity properties of (k, l)- algebraic...This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. We investigate the dissipativity properties of (k, l)- algebraically stable multistep Runge-Kutta methods with constrained grid and an uniform grid. The finite- dimensional and infinite-dimensional dissipativity results of (k, /)-algebraically stable Runge-Kutta methods are obtained.展开更多
A series of sufficient and necessary conditions for the algebraic stability of multistepRunge-Kutta methods is obtained, most of which can be regarded as extension of the relevant results available for Runge-Kutta met...A series of sufficient and necessary conditions for the algebraic stability of multistepRunge-Kutta methods is obtained, most of which can be regarded as extension of the relevant results available for Runge-Kutta methods, especially, for Radau Ⅰ A, Radau Ⅱ A and Gaussian Runge-Kutta methods.展开更多
基金supported by National Natural Science Foundation of China (No. 11171125,91130003)Natural Science Foundation of Hubei (No. 2011CDB289)Youth Foundation of Naval University of Engineering (No.HGDQNJJ10003)
文摘This paper is concerned with the numerical dissipativity of multistep Runge-Kutta methods for nonlinear Volterra delay-integro-differential equations. We investigate the dissipativity properties of (k, l)- algebraically stable multistep Runge-Kutta methods with constrained grid and an uniform grid. The finite- dimensional and infinite-dimensional dissipativity results of (k, /)-algebraically stable Runge-Kutta methods are obtained.
文摘A series of sufficient and necessary conditions for the algebraic stability of multistepRunge-Kutta methods is obtained, most of which can be regarded as extension of the relevant results available for Runge-Kutta methods, especially, for Radau Ⅰ A, Radau Ⅱ A and Gaussian Runge-Kutta methods.